Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In...Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSl (vegetation, bare soil and shadow indices) suitable for TM/ETM+ irrlages, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later prow^n to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover diigital images to deeply analyze the reason behind the variation.展开更多
The estimation of fractional vegetation cover(FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the c...The estimation of fractional vegetation cover(FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A(S2) multispectral instrument(MSI) and Landsat 8(L8) operational land imager(OLI) data regarding the retrieval of FVC in a semi-arid sandy area(Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle(UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index(NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination(R2) of S2 increased by 26.0%, and the root mean square error(RMSE) and the sum of absolute error(SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index(RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors(especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters(FVC).展开更多
An exponential relationship between net primary productivity (NPP) and integrated NDVI has been found in this paper. Based on the relationship and using multi-temporal 8 km resolution NOAA AVHRR-NDVI data, the spatial...An exponential relationship between net primary productivity (NPP) and integrated NDVI has been found in this paper. Based on the relationship and using multi-temporal 8 km resolution NOAA AVHRR-NDVI data, the spatial distribution and dynamic change of NPP and fractional vegetation cover in the Yellow River Basin from 1982 to 1999 are analyzed. Finally, the effect of rainfall on NDVI is examined. Results show that mean NPP and fractional vegetation cover have an inclining trend for the whole basin, and rainfall in flood season influences vegetation cover most.展开更多
Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction m...Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction method,the photographic method has the advantages of simple operation and high extraction accuracy.However,when soil moisture and acquisition times vary,the extraction results are less accurate.To accommodate various conditions of FVC extraction,this study proposes a new FVC extraction method that extracts FVC from a normalized difference vegetation index(NDVI)greyscale image of wheat by using a density peak k-means(DPK-means)algorithm.In this study,Yangfumai 4(YF4)planted in pots and Yangmai 16(Y16)planted in the field were used as the research materials.With a hyperspectral imaging camera mounted on a tripod,ground hyperspectral images of winter wheat under different soil conditions(dry and wet)were collected at 1 m above the potted wheat canopy.Unmanned aerial vehicle(UAV)hyperspectral images of winter wheat at various stages were collected at 50 m above the field wheat canopy by a UAV equipped with a hyperspectral camera.The pixel dichotomy method and DPK-means algorithm were used to classify vegetation pixels and non-vegetation pixels in NDVI greyscale images of wheat,and the extraction effects of the two methods were compared and analysed.The results showed that extraction by pixel dichotomy was influenced by the acquisition conditions and its error distribution was relatively scattered,while the extraction effect of the DPK-means algorithm was less affected by the acquisition conditions and its error distribution was concentrated.The absolute values of error were 0.042 and 0.044,the root mean square errors(RMSE)were 0.028 and 0.030,and the fitting accuracy R2 of the FVC was 0.87 and 0.93,under dry and wet soil conditions and under various time conditions,respectively.This study found that the DPK-means algorithm was capable of achieving more accurate results than the pixel dichotomy method in various soil and time conditions and was an accurate and robust method for FVC extraction.展开更多
The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, res...The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.展开更多
基金supported by the National Basic Research Program of China (2009CB421302)the Joint Fundsof the National Natural Science Foundation of China(U1138303)+4 种基金the National Natural Science Foundation of China(41261090,41161063)the Open Foundation of State Key Laboratory of Resources and Environment Information Systems (2010KF0003SA)Scientific Research Foundation for Doctor (BS110125)Xinjiang Natural Science Foundation for Young Scholars (2012211B04)Research Fund for Training Young Teachers (XJEDU2012S03)
文摘Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSl (vegetation, bare soil and shadow indices) suitable for TM/ETM+ irrlages, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later prow^n to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover diigital images to deeply analyze the reason behind the variation.
基金National Natural Science Foundation of China(No.41301451,41541008)Fundamental Research Funds for the Central Universities(No.2452018144)
文摘The estimation of fractional vegetation cover(FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A(S2) multispectral instrument(MSI) and Landsat 8(L8) operational land imager(OLI) data regarding the retrieval of FVC in a semi-arid sandy area(Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle(UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index(NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination(R2) of S2 increased by 26.0%, and the root mean square error(RMSE) and the sum of absolute error(SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index(RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors(especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters(FVC).
基金National Key Research Program of Basic Science, No. G1999043601 National Natural Science Foundation of China,No. 49871055
文摘An exponential relationship between net primary productivity (NPP) and integrated NDVI has been found in this paper. Based on the relationship and using multi-temporal 8 km resolution NOAA AVHRR-NDVI data, the spatial distribution and dynamic change of NPP and fractional vegetation cover in the Yellow River Basin from 1982 to 1999 are analyzed. Finally, the effect of rainfall on NDVI is examined. Results show that mean NPP and fractional vegetation cover have an inclining trend for the whole basin, and rainfall in flood season influences vegetation cover most.
基金supported by the Beijing Natural Science Foundation,China(4202066)the Central Public-interest Scientific Institution Basal Research Fund,China(JBYWAII-2020-29 and JBYW-AII-2020-31)+1 种基金the Key Research and Development Program of Hebei Province,China(19227407D)the Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences(CAAS-ASTIP2020-All)。
文摘Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction method,the photographic method has the advantages of simple operation and high extraction accuracy.However,when soil moisture and acquisition times vary,the extraction results are less accurate.To accommodate various conditions of FVC extraction,this study proposes a new FVC extraction method that extracts FVC from a normalized difference vegetation index(NDVI)greyscale image of wheat by using a density peak k-means(DPK-means)algorithm.In this study,Yangfumai 4(YF4)planted in pots and Yangmai 16(Y16)planted in the field were used as the research materials.With a hyperspectral imaging camera mounted on a tripod,ground hyperspectral images of winter wheat under different soil conditions(dry and wet)were collected at 1 m above the potted wheat canopy.Unmanned aerial vehicle(UAV)hyperspectral images of winter wheat at various stages were collected at 50 m above the field wheat canopy by a UAV equipped with a hyperspectral camera.The pixel dichotomy method and DPK-means algorithm were used to classify vegetation pixels and non-vegetation pixels in NDVI greyscale images of wheat,and the extraction effects of the two methods were compared and analysed.The results showed that extraction by pixel dichotomy was influenced by the acquisition conditions and its error distribution was relatively scattered,while the extraction effect of the DPK-means algorithm was less affected by the acquisition conditions and its error distribution was concentrated.The absolute values of error were 0.042 and 0.044,the root mean square errors(RMSE)were 0.028 and 0.030,and the fitting accuracy R2 of the FVC was 0.87 and 0.93,under dry and wet soil conditions and under various time conditions,respectively.This study found that the DPK-means algorithm was capable of achieving more accurate results than the pixel dichotomy method in various soil and time conditions and was an accurate and robust method for FVC extraction.
基金Projects NCET-04-0484 supported by the New-Century Outstanding Young Scientist Program from the Ministry of Education and D0605046040191-101Beijing Science and Technology Program
文摘The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.