期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mapping global lake aquatic vegetation dynamics using 10-m resolution satellite observations
1
作者 Xuejiao Hou Jinying Liu +3 位作者 Huabing Huang Yunlin Zhang Chong Liu Peng Gong 《Science Bulletin》 SCIE EI CAS CSCD 2024年第19期3115-3126,共12页
Aquatic vegetation is crucial for improving water quality,supporting fisheries and preserving biodiversity in lakes.Monitoring the spatiotemporal dynamics of aquatic vegetation is indispensable for the assessment and ... Aquatic vegetation is crucial for improving water quality,supporting fisheries and preserving biodiversity in lakes.Monitoring the spatiotemporal dynamics of aquatic vegetation is indispensable for the assessment and protection of lake ecosystems.Nevertheless,a comprehensive global assessment of lacustrine aquatic vegetation is lacking.This study introduces an automatic identification algorithm(with a total accuracy of 94.4%)for Sentinel-2 MSI,enabling the first-ever global mapping of aquatic vegetation distribution in 1.4 million lakes using 14.8 million images from 2019 to 2022.Results show that aquatic vegetation occurred in 81,116 lakes across six continents over the past four years,covering a cumulative maximum aquatic vegetation area(MVA)of 16,111.8 km^(2).The global median aquatic vegetation occurrence(VO,in%)is 3.0%,with notable higher values observed in South America(7.4%)and Africa(4.1%)compared with Asia(2.7%)and North America(2.4%).High VO is also observed in lakes near major rivers such as the Yangtze,Ob,and ParanáRivers.Integrating historical data with our calculated MVA,the aquatic vegetation changes in 170 lakes worldwide were analyzed.It shows that 72.4%(123/170)of lakes experienced a decline in aquatic vegetation from the early 1980s to 2022,encompassing both submerged and overall aquatic vegetation.The most substantial decrease is observed in Asia and Africa.Our findings suggest that,beyond lake algal blooms and temperature,the physical characteristics of the lakes and their surrounding environments could also influence aquatic vegetation distribution.Our research provides valuable information for the conservation and restoration of lacustrine aquatic vegetation. 展开更多
关键词 LAKES Aquatic vegetation identification Sentinel-2 MSI vegetation occurrence Remote sensing
原文传递
Quantifying the characteristics of particulate matters captured by urban plants using an automatic approach 被引量:3
2
作者 Jingli Yan Lin Lin +2 位作者 Weiqi Zhou Lijian Han Keming Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期259-267,共9页
It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer stud... It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes. 展开更多
关键词 Particulate matter retention Urban vegetation Object-based classification Size and shape characteristics Source identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部