Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships...Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.展开更多
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
基金supported by the Program of National Natural Science Foundation of China(No.31971650)the Key Project of National Key Research and Development Plan(No.2017YFC0504005)the National Natural Science Foundation of China(No.31800362).
文摘Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.