期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial dynamics of aboveground carbon stock in urban green space:a case study of Xi'an,China 被引量:14
1
作者 ZhengYang YAO JianJun LIU +2 位作者 XiaoWen ZHAO DongFeng LONG Li WANG 《Journal of Arid Land》 SCIE CSCD 2015年第3期350-360,共11页
Greenhouse gas emission of carbon dioxide(CO2) is one of the major factors causing global climate change.Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2.Quantify... Greenhouse gas emission of carbon dioxide(CO2) is one of the major factors causing global climate change.Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2.Quantifying the carbon stock,distribution and change of urban green space is vital to understanding the role of urban green space in the urban environment.Remote sensing is a valuable and effective tool for monitoring and estimating aboveground carbon(AGC) stock in large areas.In the present study,different remotely-sensed vegetation indices(VIs) were used to develop a regression equation between VI and AGC stock of urban green space,and the best fit model was then used to estimate the AGC stock of urban green space within the beltways of Xi'an city for the years 2004 and 2010.A map of changes in the spatial distribution patterns of AGC stock was plotted and the possible causes of these changes were analyzed.Results showed that Normalized Difference Vegetation Index(NDVI) correlated moderately well with AGC stock in urban green space.The Difference Vegetation Index(DVI),Ratio Vegetation Index(RVI),Soil Adjusted Vegetation Index(SAVI),Modified Soil Adjusted Vegetation Index(MSAVI) and Renormalized Difference Vegetative Index(RDVI) were lower correlation coefficients than NDVI.The AGC stock in the urban green space of Xi'an in 2004 and 2010 was 73,843 and 126,621 t,respectively,with an average annual growth of 8,796 t and an average annual growth rate of 11.9%.The carbon densities in 2004 and 2010 were 1.62 and 2.77 t/hm2,respectively.Precipitation was not an important factor to influence the changes of AGC stock in the urban green space of Xi'an.Policy orientation,major ecological greening projects such as "transplanting big trees into the city" and the World Horticultural Exposition were found to have an important impact on changes in the spatiotemporal patterns of AGC stock. 展开更多
关键词 urban green space biomass aboveground carbon stock vegetation indices
下载PDF
Spatio-temporal Variations in Drought with Remote Sensing from the Mongolian Plateau During 1982–2018 被引量:5
2
作者 CAO Xiaoming Feng Yiming SHI Zhongjie 《Chinese Geographical Science》 SCIE CSCD 2020年第6期1081-1094,共14页
The Mongolian Plateau is one of the regions most sensitive to climate change,the more obvious increase of temperature in 21 st century here has been considered as one of the important causes of drought and desertifica... The Mongolian Plateau is one of the regions most sensitive to climate change,the more obvious increase of temperature in 21 st century here has been considered as one of the important causes of drought and desertification.It is very important to understand the multi-year variation and occurrence characteristics of drought in the Mongolian Plateau to explore the ecological environment and the response mechanism of surface materials to climate change.This study examines the spatio-temporal variations in drought and its frequency of occurrence in the Mongolian Plateau based on the Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)(1982–1999)and the Moderate-resolution Imaging Spectroradiometer(MODIS)(2000–2018)datasets;the Temperature Vegetation Dryness Index(TVDI)was used as a drought evaluation index.The results indicate that drought was widespread across the Mongolian Plateau between1982 and 2018,and aridification incremented in the 21 st century.Between 1982 and 2018,an area of 164.38×10^4 km^2/yr suffered from drought,accounting for approximately 55.28%of the total study area.An area of approximately 150.06×10^4 km^2(51.43%)was subject to more than 160 droughts during 259 months of the growing seasons between 1982 and 2018.We observed variable frequencies of drought occurrence depending on land cover/land use types.Drought predominantly occurred in bare land and grassland,both of which accounting for approximately 79.47%of the total study area.These terrains were characterized by low vegetation and scarce precipitation,which led to frequent and extreme drought events.We also noted significant differences between the areal distribution of drought,drought frequency,and degree of drought depending on the seasons.In spring,droughts were widespread,occurred with a high frequency,and were severe;in autumn,they were localized,frequent,and severe;whereas,in summer,droughts were the most widespread and frequent,but less severe.The increase in temperature,decrease in precipitation,continuous depletion of snow cover,and intensification of human activities have resulted in a water deficit.More severe droughts and aridification have affected the distribution and functioning of terrestrial ecosystems,causing changes in the composition and distribution of plants,animals,microorganisms,conversion between carbon sinks and carbon sources,and biodiversity.We conclude that regional drought events have to be accurately monitored,whereas their occurrence mechanisms need further exploration,taking into account nature,climate,society and other influencing factors. 展开更多
关键词 drought occurrence frequency Temperature vegetation Dryness Index(TVDI) Land Surface Temperature-Normalized Difference vegetation Index(Ts-NDVI space) remote sensing Mongolian Plateau
下载PDF
Flow turbulence presented by different vegetation spacing sizes within a submerged vegetation patch
3
作者 Chukwuemeka Kingsley John Jaan H.Pu +2 位作者 Yakun Guo Prashanth R.Hanmaiahgari Manish Pandey 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第6期1131-1145,共15页
This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel f... This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel flow.Different vegetation densities have been built between the adjacent vegetations,and the flow measurements are taken using acoustic Doppler velocimeter(ADV)at the locations within and downstream of the vegetation panel.Three different tests are conducted,where the first test has compact vegetations,while the second and the third tests have open spaces created by one and two empty vegetation slots within the vegetated field.Observation reveals that over 10%of eddies size is generated within the vegetated zone of compact vegetations as compared with the fewer vegetations.Significant turbulence structures variation is also observed at the points in the non-vegetated row.The findings from burst-cycle analysis show that the sweep and outward interaction events are dominant,where they further increase away from the bed.The effect of vegetation on the turbulent burst cycle is mostly obvious up to approximately two-third of vegetation height where this phenomenon is also observed for most other turbulent structure. 展开更多
关键词 Velocity profiles acoustic Doppler velocimeter(ADV) turbulent intensities Reynolds stress turbulent bursting vegetated flow vegetation spacing sizes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部