An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficie...An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficiency in flux weakening region of IPMSMwith the same dynamic torque response performance in standard SV Mtechnique. The relationship between dynamic torque performance and the reference flux weakening voltage is also discussed. In order to achieve fast and smooth shift process,the torque response must be less than 20 ms in the parallel hybrid electric vehicle( HEV),according to this,modeling and experimental studies were carried out. The results show that the proposed strategy can achieve the same dynamic and steady state torque performance with higher reference flux weakening voltage,which means higher efficiency.展开更多
We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:de...We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:determine the true track geometry from measured wheelset dynamical reactions.It is known that the method works well for the vertical position of the rails but the computed lateral position is often flawed.We find that the lateral motion of the wheelset often may differ from the track geometry.The cases are investigated closely but the reasons remain unknown.While the wheelset dynamics reflect the larger(>4-6 mm)aperiodic track disturbances and single large disturbances quite well,this does not seem to be the case for general smaller or periodic track irregularities or sections behind single large disturbances.The resulting dynamics of a wheelset to lateral track irregularities are in general not sufficiently accurate to be used as the basis for a description of the track irregularities.展开更多
文摘An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficiency in flux weakening region of IPMSMwith the same dynamic torque response performance in standard SV Mtechnique. The relationship between dynamic torque performance and the reference flux weakening voltage is also discussed. In order to achieve fast and smooth shift process,the torque response must be less than 20 ms in the parallel hybrid electric vehicle( HEV),according to this,modeling and experimental studies were carried out. The results show that the proposed strategy can achieve the same dynamic and steady state torque performance with higher reference flux weakening voltage,which means higher efficiency.
文摘We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:determine the true track geometry from measured wheelset dynamical reactions.It is known that the method works well for the vertical position of the rails but the computed lateral position is often flawed.We find that the lateral motion of the wheelset often may differ from the track geometry.The cases are investigated closely but the reasons remain unknown.While the wheelset dynamics reflect the larger(>4-6 mm)aperiodic track disturbances and single large disturbances quite well,this does not seem to be the case for general smaller or periodic track irregularities or sections behind single large disturbances.The resulting dynamics of a wheelset to lateral track irregularities are in general not sufficiently accurate to be used as the basis for a description of the track irregularities.