期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
OPTIMIZING DESIGN OF MECHANICAL SELF-CENTERING DEVICE FOR SUSPENSION HEIGHT 被引量:2
1
作者 CAO Min ZHANG Yongchao YU Fan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期69-75,共7页
Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Takin... Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances. 展开更多
关键词 Suspension height SELF-CENTERING vehicle height adjustment Optimizing design Multi-objective optimization
下载PDF
Vehicle height control of electronic air suspension system based on mixed logical dynamical modelling 被引量:10
2
作者 SUN XiaoQiang CHEN Long +1 位作者 WANG ShaoHua XU Xing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1894-1904,共11页
Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hyb... Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hybrid system theory was applied to design a novel vehicle height control strategy in this paper. A nonlinear mechanism model of the vehicle height adjustment system was established based on vehicle system dynamics and thermodynamic theory for variable-mass gas charge/discharge system. In order to model both the continuous/discrete dynamics of vehicle height adjustment process and the on-off statuses switching of solenoid valves, the framework of mixed logical dynamical(MLD) modelling was used. On the basis of the vehicle height adjustment control strategy, the MLD model of the adjustment process was built by introducing auxiliary logical variables and auxiliary continuous variables. Then, the co-simulation of the nonlinear mechanism model and the MLD model was conducted based on the compiling of HYSDEL. The simulation and experimental results show that the proposed control strategy can not only adjust the vehicle height effectively, but also achieve the on-off statuses direct control of solenoid valves. 展开更多
关键词 electronic air suspension system vehicle height adjustment hybrid system mixed logical dynamical EXPERIMENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部