A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The prop...A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.展开更多
Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wa...Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.展开更多
文摘A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.
文摘Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.