Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit...Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.展开更多
This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fra...This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.展开更多
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Ro...The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.展开更多
The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-...The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-paramet...The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.展开更多
Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were de...Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.展开更多
The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate...The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data展开更多
A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model i...A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.展开更多
A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unstea...A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows,which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular,a new testing variable,i.e.,the disturbed kinetic energy E,is suggested and used in the adaptive mesh computation,which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number.Based on several calculated examples,this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.展开更多
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov...The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.展开更多
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ...This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.展开更多
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement i...In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.展开更多
This article presents a numerical investigation on a steady non-Newtonian flow through a two-dimensional channel with double constrictions. The power-law mode is employed in describing the non-Newtonian behavior of th...This article presents a numerical investigation on a steady non-Newtonian flow through a two-dimensional channel with double constrictions. The power-law mode is employed in describing the non-Newtonian behavior of the flow. An unstructured finite volume method combined with a fractional-step projection method is developed for the discretization of incompressible equations governing the non-Newtonian flows. The important flow dynamics related with the arterial diseases, such as the wall shear stress and vortex generation, are also numerically studied in detail. Numerical results reveal that there are marked differences between Newtonian and non-Newtonian models.展开更多
An unstructured finite volume time domain method (UFVTDM) is proposed to simulate stress wave propagation. The original variables of displacement and stress are solved based on the dynamic equilibrium equations. An Eu...An unstructured finite volume time domain method (UFVTDM) is proposed to simulate stress wave propagation. The original variables of displacement and stress are solved based on the dynamic equilibrium equations. An Euler explicit and unstructured finite volume method is used for time and spacial terms respectively. The displacements are stored on the cell vertex and a vertex based finite volume is formed with the integral surface and the stress is assumed as uniform in the cell. This is some similar with the stager grid method in computational fluid dynamics. Several cases are used to show the capability of the algorithm.展开更多
基金supported by the National Natural Science Foundation of China(41922027,4214200052)by the Macao Foundation+1 种基金by the Pre-research Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administrationby the Macao Science and Technology Development Fund,grant No.0001/2019/A1。
文摘Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.
基金supported by the Natural Science Foundation of China (11061021)the Program of Higher-level talents of Inner Mongolia University (SPH-IMU,Z200901004)the Scientific Research Projection of Higher Schools of Inner Mongolia(NJ10016,NJ10006)
文摘This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.
基金This paper was supported bythe Natural Science Foundation of Shandong Province (Grant No.y2004f13)
文摘The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.
基金Project supported by the National Key Project, China (Grant No. GJXM92579).
文摘The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
基金Russian Foundation of Basic Research(No. 04-01-08034, 06-01-00293-a)
文摘The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.
文摘Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.
文摘The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data
基金financially supported by the National Natural Science Foundation of China(Grant Nos.50909065 and 51109039)the Major State Basic Research Program of China(973 Program,Grant No.2012CB417002)
文摘A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.
基金The project supported by the National Natural Science Foundation of China (10125210),the Hundred-Talent Programme of the Chinese Academy of Sciences and the Innovation Project of the Chinese Academy of Sciences (KJCX-SW-L04,KJCX2-SW-L2)
文摘A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows,which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular,a new testing variable,i.e.,the disturbed kinetic energy E,is suggested and used in the adaptive mesh computation,which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number.Based on several calculated examples,this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
文摘The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.
文摘This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
基金Project supported by the National Natural Science Foundation of China(Grant No.10771134).
文摘In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.
基金supported by the National Natural Science Foundation of China (Grant No.10771134)
文摘This article presents a numerical investigation on a steady non-Newtonian flow through a two-dimensional channel with double constrictions. The power-law mode is employed in describing the non-Newtonian behavior of the flow. An unstructured finite volume method combined with a fractional-step projection method is developed for the discretization of incompressible equations governing the non-Newtonian flows. The important flow dynamics related with the arterial diseases, such as the wall shear stress and vortex generation, are also numerically studied in detail. Numerical results reveal that there are marked differences between Newtonian and non-Newtonian models.
基金supported by the Fundamental Research Funds for the Central Universities (HEUCF100307)
文摘An unstructured finite volume time domain method (UFVTDM) is proposed to simulate stress wave propagation. The original variables of displacement and stress are solved based on the dynamic equilibrium equations. An Euler explicit and unstructured finite volume method is used for time and spacial terms respectively. The displacements are stored on the cell vertex and a vertex based finite volume is formed with the integral surface and the stress is assumed as uniform in the cell. This is some similar with the stager grid method in computational fluid dynamics. Several cases are used to show the capability of the algorithm.