期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Study on the vertical deformations induced by terrestrial water storage changes in Huang-Huai-Hai river basin
1
作者 Liansheng Deng Yugang Xiao +2 位作者 Qusen Chen Feifei Liao Zhao Li 《Geodesy and Geodynamics》 EI CSCD 2024年第4期352-365,共14页
Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spati... Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project. 展开更多
关键词 Terrestrial waterstorage GRACE GNSS vertical deformations Huang-Huai-Hairiverbasin
下载PDF
Vertical deformation before and after the 2022 Menyuan Ms6.9 earthquake and analysis of earthquake precursors
2
作者 Sixin Zhang Peng Jia +1 位作者 Bowen Hou Ming Hao 《Geodesy and Geodynamics》 EI CSCD 2023年第6期582-588,共7页
This study analyzed the vertical deformation before and after the 2022 Menyuan Ms6.9 earthquake in Qinghai Province,China,using leveling profiles across faults measured from Minle County in Gansu Province to Menyuan C... This study analyzed the vertical deformation before and after the 2022 Menyuan Ms6.9 earthquake in Qinghai Province,China,using leveling profiles across faults measured from Minle County in Gansu Province to Menyuan County in Qinghai Province.Our results suggest the following:(1)The amplitude of regional vertical differential motion near the Sunna-Qilian and Lenglongling faults within the Qilian Shan increased before the 2022 Menyuan earthquake.It was accompanied by the emergence of high gradient deformation zones.Deformation at the Tongziba cross-fault leveling site near the Sunan-Qilian fault was considerable.In contrast,deformation at the Daliang cross-fault leveling site near the stepover region(adjacent to the epicenter)between the Lenglongling and Tuolaishan faults was minor.After 2018,vertical deformation at the Tongziba site notably accelerated,while that at the Daliang site was insignificant.(2)After the 2022 Menyuan earthquake,140—150 mm of subsidence deformation occurred near the Daliang site,while the Tongziba site did not experience significant deformation.(3)Vertical deformation before and after the 2022 Menyuan earthquake conforms with the elastic-rebound theory,and the evolution of pre-earthquake deformation was consistent with the strike-slip fault deformation pattern at different seismogenic stages,i.e.,the relative motion near the locked fault in the late seismogenic stage gradually weakened.The characteristics of strain accumulation and release derived from the vertical deformation before and after the Menyuan MS6.9 earthquake help understand the deformation process of earthquake preparation and earthquake precursors. 展开更多
关键词 2022 Menyuan earthquake 2016 Menyuan earthquake LEVELING vertical deformation Elastic rebound
下载PDF
Correlation analysis of longitudinal cracks and vertical deformation within asphalt pavement of cold regions
3
作者 Ke Chen Lun Ji +3 位作者 ZeYu Xiao JinQi Wu LinLin Xu ZhiCe Cheng 《Research in Cold and Arid Regions》 CSCD 2023年第6期278-287,共10页
The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positi... The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positive significance for understanding the mechanism of crack initiation,and putting forward treatment measures.In view of the complexity of longitudinal crack inducement and road surface deformation,the grey relational method was used to analyze this relationship.Through long-term monitoring of the vertical deformation data of typical road sections,the vertical deformation law of the pavement surface and its deformation characteristics under the action of temperature field are analyzed.Parameters such as vertical relative deformation,vertical relative deformation rate and vertical differential deformation VDSr were constructed to describe vertical deformation characteristics.Typical distribution characteristics of longitudinal fractures and their length and distribution characteristics are also described.The grey correlation analysis theory was utilized to analyze the relationship between deformation characteristics of sections,cross sections and monitoring points and longitudinal crack characteristics(length and location).The analysis reveals a linear positive correlation or a high correlation between several indicators.This study can provide a deeper understanding of the occurrence and development mechanism of longitudinal cracks in asphalt pavement of cold areas,and give references for the research of road engineering structure,materials and distress prevention. 展开更多
关键词 Asphalt pavement Cold region Longitudinal crack vertical deformation Grey relational analysis
下载PDF
Noise reduction and periodic signal extraction for GNSS height data in the study of vertical deformation
4
作者 Jingqi Wang Kaihua Ding +2 位作者 Heping Sun Geng Zhang Xiaodong Chen 《Geodesy and Geodynamics》 EI CSCD 2023年第6期573-581,共9页
Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned sign... Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned signals is of great significance.As an improved algorithm of empirical mode decomposition(EMD),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm has better signal processing ability.Using the CEEMDAN algorithm,the height time series of 29GNSS stations in Chinese mainland were analyzed,and good denoising effects and extraction from periodic signals were achieved.The numerical results showed that the annual signal obtained with the CEEMDAN algorithm was significantly based on Lomb_Scargle spectrum analysis,and large differences in the long-term signals were found between the stations at different locations in Chinese mainland.With respect to data denoising,compared with the EMD and wavelet denoising algorithms,the CEEMDAN algorithm respectively improved the SNR by 29.35% and 36.54%,increased the correlation coefficient by 8.67% and 11.96%,and reduced root mean square error(RMSE)by 44.68% and 43.48%,indicating that the CEEMDAN algorithm had better denoising behavior than the other two algorithms.In addition,the results demonstrated that different denoising methods had little influence on estimating the annual vertical deformation velocity.The extraction of periodic signals showed that more components were retained by using the CEEMDAN algorithm than the EMD algorithm,which indicated that the CEEMDAN algorithm had advantages over frequency aliasing.In conclusion,the CEEMDAN algorithm was recommended for processing the GNSS height time series to analyze the vertical deformation due to its excellent features of denoising and the extraction of periodic signals. 展开更多
关键词 vertical surface deformation GNSS height time series CEEMDAN DENOISING Periodic signal extraction
下载PDF
Coseismic vertical deformation of the M_S8.0 Wenchuan earthquake from repeated levelings and its constraint on listric fault geometry 被引量:24
5
作者 Qingliang Wang Duxin Cui +4 位作者 Xi Zhang Wenping Wang Jinwen Liu Kang Tian Zhaoshan Song 《Earthquake Science》 CSCD 2009年第6期595-602,共8页
The devastating Ms8.0 Wenchuan earthquake ruptured two large parallel thrust faults along the middle segment of the Longmenshan thrust belt. Preseismic and postseismic leveling data indicated the hanging wall of the Y... The devastating Ms8.0 Wenchuan earthquake ruptured two large parallel thrust faults along the middle segment of the Longmenshan thrust belt. Preseismic and postseismic leveling data indicated the hanging wall of the Yingxiu-Beichuan-Nanba thrust fault mainly presented coseismic uplift with respect to the reference point at Pingwu county town, and the observed maximum uplift of 4.7 m is located at Beichuan county (Qushan town) which is about 100 m west of the fault scarp. The foot wall of the Yingxiu-Beichuan-Nanba thrust fault mainly showed subsidence with maximum subsidence of 0.6 m near the rupture. By employing a listric dislocation model, we found that the fault geometry model of exponential dip angle δ=88°×[1-exp(-9/h)] with depth of 18 km and uniform thrust-slip of 5.6 m could fit the observed coseismic vertical deformation very well, which verifies the listric thrust model of the Longmenshan orogenic zone. 展开更多
关键词 Wenchuan earthquake LEVELING vertical deformation listric faulting
下载PDF
Comparative study on vertical deformation based on GPS and leveling data 被引量:1
6
作者 Shanlan Qin Wenping Wang Shangwu Song 《Geodesy and Geodynamics》 2018年第2期115-120,共6页
The development of GPS(Global Positioning System) technology has led to increasingly widely and successful applications of GPS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have ... The development of GPS(Global Positioning System) technology has led to increasingly widely and successful applications of GPS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical crustal movements with normal backgrounds. In this paper, we carried out a comparative study on the vertical deformation of the comprehensive profile of the cross-fault zone in Shanyin, Shanxi province, China, based on GPS and precise leveling observation data for multiple time periods. The vertical deformation rates observed with repeating GPS survey are obviously different(over 20 mm/y at some sites) from those with repeating leveling survey within a relatively short period. However, the deviations in the vertical displacement between GPS and leveling in a long-term survey(over three years) showed good consistency at 3-4 mm/y at most sites, on GPS forced offset surveying and fixed survey instruments in a long-term survey(over three years). Therefore, GPS vertical displacement results can be applied to the study of vertical crustal movements. 展开更多
关键词 vertical deformation GPS Precise leveling DEVIATIONS
下载PDF
Mechanism of Surface Vertical Deformation in Parts of the Underground Gas Storage Reservoir of Hutubi, Xinjiang, China 被引量:1
7
作者 Li Jie Li Rui +8 位作者 Wang Xiaoqiang Shi Xinpu Qiao Xuejun Zheng Liming Abudutayier. Yaseng Sun Xiaoxu Chen Shujiang Fang Wei Cheng Ruizhong 《Earthquake Research in China》 CSCD 2016年第3期451-463,共13页
The Underground Gas Storage( UGS) in Hutubi( HTB),Xinjiang is the largest gas storage reservoir in China and it has significance for coordinating the gas supply and demand relationship,peak-load regulation,implementat... The Underground Gas Storage( UGS) in Hutubi( HTB),Xinjiang is the largest gas storage reservoir in China and it has significance for coordinating the gas supply and demand relationship,peak-load regulation,implementation of strategic reserves,national security, and social economic sustainable development. Therefore, the deformation monitoring and simulation analysis of UGS operation has important technical support and reference value for the stability and safe operation of the underground gas storage. In this paper,we use the elevation data obtained from 7 periods of second-order leveling surveys in the Hutubi underground gas storage area in 2013- 2015 to analyze the influence of gas well pressure on the vertical deformation of the underground gas storage reservoir.Research has shown that the absolute vertical subsidence rate is approximately in the range from 11. 8mm to 16. 1mm and the relative subsidence change is about 4. 3mm,near the surface deformation of Hutubi underground gas storage area except for the annual subsidence rate of- 2. 86 mm by the basic influence of uplift of the Tianshan Mountains.Groundwater over-extraction in the Hutubi area also has an impact on the vertical variation of the surface in this region. The land surface change per unit pressure of gas storage has an impact of about 0. 625mm- 1. 125 mm. 17 scenes Terra SAR-X radar images acquired from August,2013 to August,2014 are exploited by Small Baseline Subset( SBAS) In SAR method to obtain the surface deformation time series during the operation of UGS in Hutubi,meanwhile combined with the pressure data of injection / productionwells,the multi-point source Mogi model is used to simulate the UGS deformation field in Hutubi. The results show that the deformation characteristics of the whole UGS area is a discontinuous distribution with the peak deformation value of 10 mm and- 8mm in the satellite line of sight( LOS) during gas injection and production,respectively and the retrieved deformation sequences correspond very well to the gas injection / production pressure changes. Based on the multi- point source Mogi model, we simulate the deformation process of UGS,HTB,and with the adaptive forward search method,the radius and depth of point source are obtained. The simulated results indicate that when the average injection / production pressure of UGS,HTB is 18 MPa and 15 MPa, LOS deformation is up to 7mm and- 4mm,respectively,and surface deformation is related to the density of gas injection( production) wells. The UGS gas distribution is not uniform,indicating that the structure of underground gas storage is complex. Thus using a more elaborate geomechanical model and other deformation observation data will be helpful for better simulating the UGS internal structure and explaining the mechanism of deformation. 展开更多
关键词 Underground gas storage vertical deformation Gas well pressure change Leveling survey Small Baseline Subset(SBAS) InSAR Mogi Model Crustal deformation
下载PDF
Gaussian Radial Basis Function interpolation in vertical deformation analysis
8
作者 Mohammad Amin Khalili Behzad Voosoghi 《Geodesy and Geodynamics》 CSCD 2021年第3期218-228,共11页
In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation ... In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands. 展开更多
关键词 Interpolation accuracy Gaussian Radial Basis Functions Finite Element Method INSAR vertical deformation
下载PDF
Vertical deformation of the fault-crossing network around Baotou,observed by GPS
9
作者 Qin Shanlan Du Weiji Ji Lingyun 《Geodesy and Geodynamics》 2013年第4期57-61,共5页
GPS data and precise leveling data of seismic network profiles across the fault in Baotou in 2006, 2009 and 2011 were processed and analyzed to test the feasibility of using GPS technology for fault-crossing vertical ... GPS data and precise leveling data of seismic network profiles across the fault in Baotou in 2006, 2009 and 2011 were processed and analyzed to test the feasibility of using GPS technology for fault-crossing vertical deformation monitoring. The results showed that high precision cross-fauh vertical deformation measurements can be obtained using appropriate GPS data processing strategies. 展开更多
关键词 fault-crossing precise leveling vertical deformation GPS vertical deviation mapping function
下载PDF
Vertical deformation and tectonic activity in Tianjin area
10
作者 Liangqian Guo Wanju Bo +4 位作者 Yukun Chen Lanyu Yao La Ta Haitao Zhou He Guo 《Geodesy and Geodynamics》 2010年第1期42-47,共6页
Vertical deformation in Tianjin area during 1992 -2008 was calculated from leveling data. The effect of large surface subsidence caused by extensive groundwater pumping was removed by fitting the data along each surve... Vertical deformation in Tianjin area during 1992 -2008 was calculated from leveling data. The effect of large surface subsidence caused by extensive groundwater pumping was removed by fitting the data along each survey line with a polynomial function. The results are fitted with crustal blocks individually in this area. Vertical deformation rates are mapped, vertical rates of the main fault zones were calculated, and the activities of the blocks and fault zones were investigated. The observed vertical deformation shows that some of the blocks tilted and some blocks rose or subsided as a whole. The vertical rates at fault zones in the area vary within the range of 0. 13-0. 48 mm/a,with an average value of 0.29 mm/a. 展开更多
关键词 level data ground subsidence crustal vertical deformation block motion vertical velocity of fault zone
下载PDF
Cround vertical deformation in earthquake of Gonghe,Qinghai Province
11
作者 巩守文 郭逢英 《Earthquake Science》 CSCD 1994年第S1期129-132,共4页
CroundverticaldeformationinearthquakeofGonghe,QinghaiProvinceShou-WenGONG(巩守文)andFeng-YingGUO(郭逢英)(SecondCru... CroundverticaldeformationinearthquakeofGonghe,QinghaiProvinceShou-WenGONG(巩守文)andFeng-YingGUO(郭逢英)(SecondCrustalDeformationMo... 展开更多
关键词 vertical deformation Gonghe earthquake
下载PDF
The North-South Seismic Belt: Vertical Deformation Velocity Gradient Research
12
作者 Liu Liwei Ji Lingyun Zhao Qiang 《Earthquake Research in China》 CSCD 2017年第2期169-178,共10页
The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this ... The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this paper,using long period leveling data combined with GPS data,the vertical deformation gradient values are calculated. Leveling data and GPS data are two different means of monitoring deformation,but the result is approximately the same vertical deformation gradient. The results show that the spatial distribution of the vertical deformation velocity gradient and tectonic distribution has an obvious correlation. The most significant gradient anomalies along the North-South Seismic Belt are Xianshuihe fault, Longmenshan fault and Xiaojiang-Zemuhe fault, while the second gradient anomalies in the northeastern Qinghai-Tibetan plateau are Zhuanglanghe fault and Lenglongling fault. The Menyuan M_S6. 4 earthquake in 2016 occurred in this abnormal area. However,according to the vertical deformation high gradient area distribution,there is also the possibility of an earthquake occurrence in the Tianzhu and Jingtai area.The area of convergence of three major fault zones is the strongest tectonically active region of the North-South Seismic Belt. 展开更多
关键词 Gradient North-South Seismic Belt vertical deformation Strong Earthquake activty
下载PDF
Response of vertical deformation on faults to remote strong earthquakes
13
作者 荆燕 张世中 +6 位作者 李宏 熊玉珍 刘凤秋 孙启伟 董建业 张鸿旭 陈葛天 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第2期172-179,共8页
Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes (epicentral distance ≥1 500 km, Ms≥7.0) are observed by fault-monitoring instruments of new type during recent two years. T... Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes (epicentral distance ≥1 500 km, Ms≥7.0) are observed by fault-monitoring instruments of new type during recent two years. The monitoring result shows, delay time, maximum amplitude and duration of vertical deformation on the non-causative fault have remarkable close relationship with earthquakes magnitude and epicentral distance. The delay time of vertical coseismic deformation have positive linear relationship with epicentral distance. The velocity of coseismic deformation is 5.5 km/s, close to the velocity of surface wave in granite. The logarithms of maximum amplitude of coseismic deformation and epicentral distance have remarkable linear relationship with magnitude. The greater the magnitude and the closer the epicentral distance are, the bigger the maximum amplitude of coseismic deformation on non-causative fault will be. Relative to the epicentral distance, the magnitude is the most important factor to the duration of coseismic vertical deformation on the non-causative fault. Stronger earthquake causes longer vibration duration of coseismic deformation. The experiential equation of co-seismic deformation faults obtained by this work is significant on the coseismic deformation research. 展开更多
关键词 vertical fault deformation remote strong earthquakes coseismic response
下载PDF
Vertical crustal deformation velocity and its influencing factors over the Qinghai-Tibet Plateau based on satellite gravity data 被引量:4
14
作者 HuRong Duan JunGang Guo +2 位作者 LingKang Chen JiaShuang Jiao HeTing Jian 《Earth and Planetary Physics》 EI CSCD 2022年第4期366-377,共12页
The uplift of the Qinghai-Tibet Plateau(TP)strongly influences climate change,both regionally and globally.Surface observation data from this region have limited coverage and are difficult to obtain.Consequently,the v... The uplift of the Qinghai-Tibet Plateau(TP)strongly influences climate change,both regionally and globally.Surface observation data from this region have limited coverage and are difficult to obtain.Consequently,the vertical crustal deformation velocity(VCDV)distribution of the TP is poorly constrained.In this study,the VCDV from the TP was inverted by using data from the gravity recovery and climate experiment(GRACE).We were able to obtain the vertical crustal movement by deducting the hydrological factors,based on the assumption that the gravity signal detected by GRACE is mainly composed of hydrological factors and vertical crustal movement.From the vertical crustal movement,we inverted the distribution of the VCDV across the TP.The results showed that the VCDV of the southern,eastern,and northern TP is~1.1 mm/a,~0.5 mm/a,and−0.1 mm/a,respectively,whereas that of the region between the Qilian Haiyuan Fault and the Kunlun Fault is~0.0 mm/a.These results are consistent with the distribution of crustal deformation,thrust earthquakes and faults,and regional lithospheric activity.The hydrology,crustal thickness,and topographic factors did not change the overall distribution of the VCDV across the TP.The influence of hydrological factors is marked,with the maximum differences being approximately−0.4 mm/a in the northwest and 1.0 mm/a in the central area.The results of this study are significant for understanding the kinematics of the TP. 展开更多
关键词 GRACE(gravity recovery and climate experiment) Qinghai-Tibet Plateau crustal vertical deformation hydrological factors crustal thickness
下载PDF
Effective relaxation time and viscosity of the earth inferred from the postseismic vertical deformations of the 1990 MS=7.0 Gonghe earthquake 被引量:1
15
作者 王庆良 巩守文 +1 位作者 张希 祝意青 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第5期40-47,共8页
The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip... The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ = η/μ is 2.6 years, and the effective viscosity η is about 10 18 Pa·s. 展开更多
关键词 Gonghe earthquake POSTSEISMIC vertical deformation earth medium relaxation time VISCOSITY
下载PDF
The research on relationship between wavelet transform on vertical deformation and moderate earthquakes in Hexi region,Gansu Province 被引量:1
16
作者 张永志 王双绪 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第2期46-54,共9页
n this paper, the possibility of wavelet transform applied to compute the vertical deformation is discussed. Both two dimension plane equation of wavelet transform and B-wavelet based on basic spline function are dedu... n this paper, the possibility of wavelet transform applied to compute the vertical deformation is discussed. Both two dimension plane equation of wavelet transform and B-wavelet based on basic spline function are deduced. According to the equation and B-wavelet, multi-periods vertical deformation data which were measured from 1971 to 1995 in Hexi-Qilian Mountain region, Gansu Province are calculated. The results are: ① The multi-resolution analysis of wavelet transform can filter the different spatial wavelength in vertical deformation information on different scales effectively and let us to see the heterogeneous in distribution of vertical deformation clearly, therefore, it is an important tool in investigating the relationship between the vertical deformation and the seismicity; ② The main variation of both the first and second results in wavelet transform mainly takes place along the main faults which explains that the short wave variation of vertical deformation is caused by the faults activities; ③ The wavelet transform of vertical deformation in Hexi-Qilian Mountain area shows that the vertical deformation in southeast parts of Hexi region was larger than that in other parts and there were several moderate earthquakes such as Menyuan Ms=6.4 earthquake in 1986, Jingtai Ms=6.2 earthquake in 1990, Yongdeng Ms=5.8 earthquake in 1995. The vertical deformation in the northwest part of the region was not so large as that in southeast part where ware no strong earthquakes. 展开更多
关键词 vertical deformation wavelet multi-resolution analysis basic spline function
下载PDF
Water infiltration and soil-water characteristics of compacted loess under applied vertical stress
17
作者 ZHANG Lin LI Tong-lu +2 位作者 LI Ji-heng LIANG Wei CHEN Cun-li 《Journal of Mountain Science》 SCIE CSCD 2023年第3期873-885,共13页
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t... Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress. 展开更多
关键词 Additional stress LOESS vertical deformation Wetting front Soil column Soil-water characteristic curves
下载PDF
Vertical Differential Structural Deformation of the Main Strike-slip Fault Zones in the Shunbei Area,Central Tarim Basin:Structural Characteristics,Deformation Mechanisms,and Hydrocarbon Accumulation Significance 被引量:3
18
作者 TIAN Fanglei HE Dengfa +1 位作者 CHEN Jiajun MAO Danfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1415-1431,共17页
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i... Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments. 展开更多
关键词 strike-slip fault vertical differential structural deformation hydrocarbon accumulation Shunbei area central Tarim Basin
下载PDF
Distribution law and susceptibility of geohazards across a gradient belt of the Western Sichuan Plateau
19
作者 LI Tianbin WANG Jianfeng +4 位作者 HE Chaoyang MENG Lubo LI Chaofei MA Junjie WEI Daqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1849-1867,共19页
Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde... Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning. 展开更多
关键词 Gradient belt GEOHAZARDS Distribution law Bouguer Gravity anomaly gradient vertical deformation gradient SUSCEPTIBILITY
下载PDF
The INSAR technique:its principle and applications to mapping the deformation field of earthquakes 被引量:2
20
作者 XIN JIAN SHAN HONG YEInstitute of Geology, China Seismological Bureau, Beijing 100029, China 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第6期103-113,共11页
The development, state of art and prospects of application of the radar remote sensing technique are presented. The principle of the INSAR (Interferometric Synthetic Aperture Radar) technique is expounded in more de... The development, state of art and prospects of application of the radar remote sensing technique are presented. The principle of the INSAR (Interferometric Synthetic Aperture Radar) technique is expounded in more details. Some applications of this technique in measuring seismic dislocations are given. Finally, it is pointed out that INSAR has a non replaceable application potential in observing ground surface vertical deformations; it would provide an entirely new means and method for monitoring the dynamic field of earthquakes and give an extremely great impetus to the future earthquake prediction work. 展开更多
关键词 radar remote sensing INSAR technique vertical deformation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部