Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main struc...An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations (period 〈 1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances (1 rain〈period 〈 10 min) are anisotropic with rather strong coherency. However, in the windy atmospheric boundary layer at sea, compared with that over land, there are some pronounced differences: (1) the average horizontal speed is almost independent of height, and the vertical velocity is positive in the lower marine atmospheric boundary layer; (2) the vertical flux of horizontal momentum is nearly independent of height in the low layer indicating the existence of a constant flux layer, unlike during strong wind over the land surface; (3) the kinetic energy and friction velocity of turbulent fluctuations are larger than those of gusty disturbances; (4) due to the independence of horizontal speed to height, the horizontal speed itself (not its vertical gradient used over the land surface) can be used as the key parameter to parameterize the turbulent and gusty characteristics with high accuracy.展开更多
The vertical structure of Planetary boundary layer over Arctic floating ice is presented by using about 50 atmospheric profiles and relevant data sounded at an ice station over Arctic Ocean from 22 August to 3 Septemb...The vertical structure of Planetary boundary layer over Arctic floating ice is presented by using about 50 atmospheric profiles and relevant data sounded at an ice station over Arctic Ocean from 22 August to 3 September,2003.It shows that the height of the convective boundary layer in day is greater than that of the stability boundary layer in night.The boundary layer can be described as vertical structures of stability,instability and multipling The interaction between relative warm and wet down draft air from up level and cool air of surface layer is significant,which causes stronger wind shear,temperature and humidity inversion with typical wind shear of 10 m/s/100 m,intensity of temperature inversion of 8 ℃/100 m.While the larger pack ice is broken by such process,new ice free area in the high latitudes of arctic ocean.The interactions between air/ice/water are enhanced.The fact helps to understanding characteristics of atmospheric boundary layer and its effect in Arctic floating ice region.展开更多
The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the I...The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the International Polar Year 2008 to 2009 at Zhongshan Station, to further the understanding of the structure and processes of the ABL. The results show that the fre- quency of the convective boundary layer in the warm season accounts for 84% of its annual occurrence frequency. The frequency of the stable boundary layer in the cold season accounts for 71% of its annual occurrence frequency. A neutral boundary layer ap- pears rarely. The average altitude of the convective boundary layer determined by the parcel method is 600 m; this is 200 to 300 m higher than that over inland Antarctica. The average altitude of the top of the boundary layer determined by the potential tempera- ture gradient and humidity gradient is 1 200 m in the warm season and 1 500 m in the cold season. The vertical structures of ozone and specific humidity in the ABL exhibit obvious seasonal changes. The specific humidity is very high with greater vertical gradi- ent in the warm season and very low with a lesser gradient in the cold season under 2 000 m. The atmospheric ozone in the ABL is consumed by photochemical processes in the warm season, which results in a slight difference in altitude. The sub-highest ozone center is located in the boundary layer, indicating that the ozone transferred from the stratosphere to the troposphere reaches the low boundary layer during October and November in Antarctica.展开更多
Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense...Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense fog weather on December 13-14 in 2007 were analyzed,as well as their evolution laws in the formation and dispersion of fog,and the boundary layer characteristics of winter dense fog in Nanjing were revealed,while the development of fog was simulated by means of mesoscale numerical model.The results showed that the formation and dispersion of fog was greatly affected by inversion and humidity in the surface layer,and the wind direction in the surface layer also had effect on the formation and dispersion of advection fog.Mesoscale numerical model could preferably simulate the evolution of temperature,humidity,vertical speed in the development of fog,and the simulation of water vapor content in the fog could forecast the formation and dispersion of fog.展开更多
In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu...In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu loess plateau. The results show that the bottom of the stratosphere is at about 16 500 m and varies between 14 000 m and 18 000 m above the ground. The center of the westerly jet is located between 8300 m and 14 300 m above the ground and its direction moves between 260~ and 305~. There is an inverse humidity layer at about 3000 m height above the ground. The maximum of the air temperature occurs at 1700 LST in the layer below 800 m above the ground. The inversion layer is relatively thick. The time that the maximum of the vapor occurs is not the same for different layers. The depth of the atmospheric boundary layer can reach about 1000 m and the depth of the stable boundary layer can be 650 m.展开更多
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-th...Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
In this paper, the characteristics of the atmospheric boundary layer(ABL) vertical structure over the North China Plain(NCP) during a comprehensive observation experiment conducted during 15–21 December 2018 were inv...In this paper, the characteristics of the atmospheric boundary layer(ABL) vertical structure over the North China Plain(NCP) during a comprehensive observation experiment conducted during 15–21 December 2018 were investigated. Observational data were obtained with a large tethered balloon, Doppler wind lidar, and ground-level instruments. The maximum concentration of PM_(2.5) exceeded 200 μg m^(-3), and the ratio of PM_(2.5)/PM_(10) was approximately 0.4(its maxi-mum was approximately 0.8) during the whole observation period, indicating the explosive growth of dominant fine-mode aerosols in the winter heating season. Elevated concentrations of pollutants decreased the solar irradiance received by the ground, resulting in lower temperature at ground level. Our results illustrate three distinct types of vertical profiles: Type 1(convective state)—the concentration of PM_(2.5) decreased nearly linearly with increase of the height below approximately 600 m;Type 2(stable state)—the PM_(2.5) concentration sharply decreased from the ground to approximately 200 m;and Type 3(multilayer structure)—some pollutants were suspended aloft in the upper air layer. Diurnal evolution of the vertical profiles of PM_(2.5) and their relationship with the changes in meteorological factors were identified. From daytime to nighttime, the vertical profiles evolved from Type 1 to Type 2 or Type 3. All the 33 vertical PM_(2.5) profiles that we obtained showed a strong relationship with elements of the ABL structure, such as the distributions of winds, the inversion layer, and turbulence activities. A light-wind layer and weak turbulence activity, especially within the inversion layer, contributed greatly to the accumulation of pollutants.Vertical PM_(2.5) concentration patterns were also greatly affected by local ground-level emission sources and regional transport processes.展开更多
One of the most important parameters in meteorology is the mean wind profile in the tropical cyclone boundary layer.The vertical profile of wind speed and wind direction were measured during the period of the Nisarga cy...One of the most important parameters in meteorology is the mean wind profile in the tropical cyclone boundary layer.The vertical profile of wind speed and wind direction were measured during the period of the Nisarga cyclone from May 31st,2020,to June 5th,2020,using the newly installed Phased Array Doppler Sodar system at the Center for Space and Atmospheric Science(CSAS),Sanjay Ghodawat University,Kolhapur(16.74◦N,74.37◦E;near India's western coast).Our analysis revealed that the maximum mean wind speed was 17 m/s on June 3,2020,at 10:00 IST.It also shows the change in wind direction from southwest to southeast on June 2 and 3,2020.Daily high-resolution reanalysis data in the domain,0–25◦N,65–110◦E,during the period from May 31st to June 5th,2020,revealed the variation of the atmospheric pressure of the Nisarga cyclone from 1000 to 1008 hPa,sea surface temperature(SST)between 30◦C and 31◦C,outgoing longwave radiation(OLR)between 100 and 240 Wm-2,wind speed between 3 and 15 m/s,and low values of vertical wind shear(VWS)were observed to the north of Nisarga track.These observations may provide more insights for the study of boundary layer turbulence during cyclonic activities.展开更多
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to a...The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.展开更多
In the present study, three wavelet basis functions, i.e., Mexican-hat, Morlet, and Wave, were used to analyze the atmospheric turbulence data obtained from an eddy covariance system in order to determine the effect o...In the present study, three wavelet basis functions, i.e., Mexican-hat, Morlet, and Wave, were used to analyze the atmospheric turbulence data obtained from an eddy covariance system in order to determine the effect of six meteorological elements including three-dimensional wind speed, temperature, and CO2and H2O concentrations on the time scale of coherent structures. First, we used the degree of correlation between original and reconstructed waveforms to test the three wavelets’performance when determining the time scale of coherent structures. The Wave wavelet’s reconstructed coherent structure signal best matched the original signal;thus, it was used to further analyze the time scale, number, and time cover of the meteorological elements. We found similar results for all elements, though there was some internal variation, suggesting that coherent structures are not inherently dependent on these elements. Our results provide a basis for proper coherent structure detection in atmospheric turbulence and improve the understanding of similarities and differences between coherent structure characteristics of different meteorological elements, which is helpful for further research into atmospheric turbulence and boundary layers.展开更多
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation...In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.展开更多
In the atmospheric boundary layer, especially during strong wind period, the coherent structures are obvious and related to the direct interaction of the air masses with the ground. In this paper, we used the observat...In the atmospheric boundary layer, especially during strong wind period, the coherent structures are obvious and related to the direct interaction of the air masses with the ground. In this paper, we used the observation data during dust weather in Northwest Gansu to study the coherent structure and their ‘‘anomalous diffusion''. The structures in the atmospheric boundary layer included turbulent fluctuations and gusty wind disturbances, and could be denoted as ‘‘critical events' '. Their fractal dimensions were expressed by the complex index l of waiting times. Although the complex index can indicate the ability of the system to generate coherent structures, it has a strong dependence on the threshold marking the‘‘critical events' '. Hence, the continuous time random walk method was used to analyze the coherent structures. The scaling law of anomalous diffusion of coherent structures was obtained, and the diffusion scaling exponent H that indicated the ability of diffusion of different structures was analyzed. The exponents changed with structure scales which were affected by velocities and heights. At small scales, it was almost isotropic, and at large scales, the coherent structures were obvious and the diffusion was anomalous.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金supported by the National Nature Science Foundation of China (NSFC, Grant Nos. 40830103 and 41375018)a National Program on Key Basic Research project (973 Program) (Grant No. 2010CB951804)+2 种基金the plan of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences (Grant No. LAPC-KF-2013-11)China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY200906008)the program of the Chinese Academy of Sciences (Grant No. XDA10010403)
文摘An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations (period 〈 1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances (1 rain〈period 〈 10 min) are anisotropic with rather strong coherency. However, in the windy atmospheric boundary layer at sea, compared with that over land, there are some pronounced differences: (1) the average horizontal speed is almost independent of height, and the vertical velocity is positive in the lower marine atmospheric boundary layer; (2) the vertical flux of horizontal momentum is nearly independent of height in the low layer indicating the existence of a constant flux layer, unlike during strong wind over the land surface; (3) the kinetic energy and friction velocity of turbulent fluctuations are larger than those of gusty disturbances; (4) due to the independence of horizontal speed to height, the horizontal speed itself (not its vertical gradient used over the land surface) can be used as the key parameter to parameterize the turbulent and gusty characteristics with high accuracy.
文摘The vertical structure of Planetary boundary layer over Arctic floating ice is presented by using about 50 atmospheric profiles and relevant data sounded at an ice station over Arctic Ocean from 22 August to 3 September,2003.It shows that the height of the convective boundary layer in day is greater than that of the stability boundary layer in night.The boundary layer can be described as vertical structures of stability,instability and multipling The interaction between relative warm and wet down draft air from up level and cool air of surface layer is significant,which causes stronger wind shear,temperature and humidity inversion with typical wind shear of 10 m/s/100 m,intensity of temperature inversion of 8 ℃/100 m.While the larger pack ice is broken by such process,new ice free area in the high latitudes of arctic ocean.The interactions between air/ice/water are enhanced.The fact helps to understanding characteristics of atmospheric boundary layer and its effect in Arctic floating ice region.
基金supported by the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(2011-2015)
文摘The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the International Polar Year 2008 to 2009 at Zhongshan Station, to further the understanding of the structure and processes of the ABL. The results show that the fre- quency of the convective boundary layer in the warm season accounts for 84% of its annual occurrence frequency. The frequency of the stable boundary layer in the cold season accounts for 71% of its annual occurrence frequency. A neutral boundary layer ap- pears rarely. The average altitude of the convective boundary layer determined by the parcel method is 600 m; this is 200 to 300 m higher than that over inland Antarctica. The average altitude of the top of the boundary layer determined by the potential tempera- ture gradient and humidity gradient is 1 200 m in the warm season and 1 500 m in the cold season. The vertical structures of ozone and specific humidity in the ABL exhibit obvious seasonal changes. The specific humidity is very high with greater vertical gradi- ent in the warm season and very low with a lesser gradient in the cold season under 2 000 m. The atmospheric ozone in the ABL is consumed by photochemical processes in the warm season, which results in a slight difference in altitude. The sub-highest ozone center is located in the boundary layer, indicating that the ozone transferred from the stratosphere to the troposphere reaches the low boundary layer during October and November in Antarctica.
文摘Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense fog weather on December 13-14 in 2007 were analyzed,as well as their evolution laws in the formation and dispersion of fog,and the boundary layer characteristics of winter dense fog in Nanjing were revealed,while the development of fog was simulated by means of mesoscale numerical model.The results showed that the formation and dispersion of fog was greatly affected by inversion and humidity in the surface layer,and the wind direction in the surface layer also had effect on the formation and dispersion of advection fog.Mesoscale numerical model could preferably simulate the evolution of temperature,humidity,vertical speed in the development of fog,and the simulation of water vapor content in the fog could forecast the formation and dispersion of fog.
基金funded by the Centurial Program sponsored by the Chinese Academy of Sciences (Grant No. 2004406)the Project KZCX2-YW-220+2 种基金Program of Knowledge Innovation for the 3rd period of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant No. 40730952)the Field Station Foundation of the Chinese Academy of the Sciences
文摘In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu loess plateau. The results show that the bottom of the stratosphere is at about 16 500 m and varies between 14 000 m and 18 000 m above the ground. The center of the westerly jet is located between 8300 m and 14 300 m above the ground and its direction moves between 260~ and 305~. There is an inverse humidity layer at about 3000 m height above the ground. The maximum of the air temperature occurs at 1700 LST in the layer below 800 m above the ground. The inversion layer is relatively thick. The time that the maximum of the vapor occurs is not the same for different layers. The depth of the atmospheric boundary layer can reach about 1000 m and the depth of the stable boundary layer can be 650 m.
基金supported by the national natural Science Foundation of China(40830103 and 41375018)the national Basic Research Program of China(2010CB951804)the Research Program of the Chinese Academy of Sciences(XDA10010403)
文摘Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).
基金Supported by the National Key Research and Development Program of China (2017YFC0209605)National Natural Science Foundation of China (41975108)General Financial Grant from the China Postdoctoral Science Foundation (2020M670420)。
文摘In this paper, the characteristics of the atmospheric boundary layer(ABL) vertical structure over the North China Plain(NCP) during a comprehensive observation experiment conducted during 15–21 December 2018 were investigated. Observational data were obtained with a large tethered balloon, Doppler wind lidar, and ground-level instruments. The maximum concentration of PM_(2.5) exceeded 200 μg m^(-3), and the ratio of PM_(2.5)/PM_(10) was approximately 0.4(its maxi-mum was approximately 0.8) during the whole observation period, indicating the explosive growth of dominant fine-mode aerosols in the winter heating season. Elevated concentrations of pollutants decreased the solar irradiance received by the ground, resulting in lower temperature at ground level. Our results illustrate three distinct types of vertical profiles: Type 1(convective state)—the concentration of PM_(2.5) decreased nearly linearly with increase of the height below approximately 600 m;Type 2(stable state)—the PM_(2.5) concentration sharply decreased from the ground to approximately 200 m;and Type 3(multilayer structure)—some pollutants were suspended aloft in the upper air layer. Diurnal evolution of the vertical profiles of PM_(2.5) and their relationship with the changes in meteorological factors were identified. From daytime to nighttime, the vertical profiles evolved from Type 1 to Type 2 or Type 3. All the 33 vertical PM_(2.5) profiles that we obtained showed a strong relationship with elements of the ABL structure, such as the distributions of winds, the inversion layer, and turbulence activities. A light-wind layer and weak turbulence activity, especially within the inversion layer, contributed greatly to the accumulation of pollutants.Vertical PM_(2.5) concentration patterns were also greatly affected by local ground-level emission sources and regional transport processes.
文摘One of the most important parameters in meteorology is the mean wind profile in the tropical cyclone boundary layer.The vertical profile of wind speed and wind direction were measured during the period of the Nisarga cyclone from May 31st,2020,to June 5th,2020,using the newly installed Phased Array Doppler Sodar system at the Center for Space and Atmospheric Science(CSAS),Sanjay Ghodawat University,Kolhapur(16.74◦N,74.37◦E;near India's western coast).Our analysis revealed that the maximum mean wind speed was 17 m/s on June 3,2020,at 10:00 IST.It also shows the change in wind direction from southwest to southeast on June 2 and 3,2020.Daily high-resolution reanalysis data in the domain,0–25◦N,65–110◦E,during the period from May 31st to June 5th,2020,revealed the variation of the atmospheric pressure of the Nisarga cyclone from 1000 to 1008 hPa,sea surface temperature(SST)between 30◦C and 31◦C,outgoing longwave radiation(OLR)between 100 and 240 Wm-2,wind speed between 3 and 15 m/s,and low values of vertical wind shear(VWS)were observed to the north of Nisarga track.These observations may provide more insights for the study of boundary layer turbulence during cyclonic activities.
基金Supported by the National Science Foundation of China under Grant Nos. 40575006 and 40830957the National Key Program for Developing Basic Sciences under Grant No. G1998040906
文摘The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.
基金National Key R&D Program of China(2017YFC0209606,2016YFA0602701)National Key Project of MOST (2016YFC0203305)National Natural Science Foundation of China (41775015,41630422)。
文摘In the present study, three wavelet basis functions, i.e., Mexican-hat, Morlet, and Wave, were used to analyze the atmospheric turbulence data obtained from an eddy covariance system in order to determine the effect of six meteorological elements including three-dimensional wind speed, temperature, and CO2and H2O concentrations on the time scale of coherent structures. First, we used the degree of correlation between original and reconstructed waveforms to test the three wavelets’performance when determining the time scale of coherent structures. The Wave wavelet’s reconstructed coherent structure signal best matched the original signal;thus, it was used to further analyze the time scale, number, and time cover of the meteorological elements. We found similar results for all elements, though there was some internal variation, suggesting that coherent structures are not inherently dependent on these elements. Our results provide a basis for proper coherent structure detection in atmospheric turbulence and improve the understanding of similarities and differences between coherent structure characteristics of different meteorological elements, which is helpful for further research into atmospheric turbulence and boundary layers.
基金This study is jointly supported by the National Natural Science Foundation of China under the Program 49575251 and by LAPC.
文摘In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.
基金supported by the National Natural Science Foundation of China(40830103 and 41375018)the National Basic Research Program of China(2010CB951804)+1 种基金the strategy guidefor the specific task of the Chinese Academy of Sciences(XDA05000000,XDA05040301)Special Finance from China Meteorological Administration(GYHY200706034)
文摘In the atmospheric boundary layer, especially during strong wind period, the coherent structures are obvious and related to the direct interaction of the air masses with the ground. In this paper, we used the observation data during dust weather in Northwest Gansu to study the coherent structure and their ‘‘anomalous diffusion''. The structures in the atmospheric boundary layer included turbulent fluctuations and gusty wind disturbances, and could be denoted as ‘‘critical events' '. Their fractal dimensions were expressed by the complex index l of waiting times. Although the complex index can indicate the ability of the system to generate coherent structures, it has a strong dependence on the threshold marking the‘‘critical events' '. Hence, the continuous time random walk method was used to analyze the coherent structures. The scaling law of anomalous diffusion of coherent structures was obtained, and the diffusion scaling exponent H that indicated the ability of diffusion of different structures was analyzed. The exponents changed with structure scales which were affected by velocities and heights. At small scales, it was almost isotropic, and at large scales, the coherent structures were obvious and the diffusion was anomalous.