Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of pr...Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.展开更多
Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear...Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based o...The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based on Hamilton's principle with an assumed mode method. The velocity feedback control algorithm is used to design the controller. The free and forced vibration behaviors of the two-span beams with the piezoelectric actuators and sensors are analyzed. The vibration properties of the disordered two-span beams caused by misplacing the middle support are also researched. In addition, the effects of the length disorder degree on the vibration performances of the disordered beams are investigated. From the numerical results, it can be concluded that the disorder in the length of the periodic two-span beams will cause vibration localizations of the free and forced vibrations of the structure, and the vibration localization phenomenon will be more and more obvious when the length difference between the two sub-beams increases. Moreover, when the velocity feedback control is used, both the forced and the free vibrations will be suppressed. Meanwhile, the vibration behaviors of the two-span beam are tuned.展开更多
Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorith...Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.展开更多
The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of...The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.展开更多
The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the ...The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the number of modes to be considered is quite large after modal truncation,while only a limited number of actuators and sensors are to be placed.This makes it hard to determine the actuator and sensor locations with the existing placement methods in the literature such as the methods based on the controllability/observability grammian.To deal with this issue,an actuator and sensor placement method based on singular value decompositions(SVD)of the input and output matrices is proposed,which guarantees the modal controllability and observability of the system.The effectiveness of the SVD based method is verified through numerical simulations in which comparisons are conducted between randomly-chosen locations and the optimal ones obtained by a genetic algorithm.展开更多
This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanis...This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanism is decoupled by means of the complex mode theory. The state-space expression of the controlled system is developed, which includes the system noise and the observation noise. Moreover, a discrete linear quadratic Gaussian (LQG) state feedback controller and a discrete Kalman filter are designed separately. Finally, the proposed method is applied to the on-line vibration control of a macroscopically smart mechanism. The experimental results reveal that the strain amplitude of the flexible link ig suppressed by 80% and the dynamic performance of mechanism has been ameliorated significantly.展开更多
The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is d...The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of third order nonlinear ordinary differential equations which are solved by Runge-Kutta numerical integration procedures. Only after the transverse vibration of the plane is considered and the nonlinear terms are neglected, can the nonlinear ordinary differential equations be expressed as a continuous state equation in the state space. The matrix of state transition is approximated stepwise by the matrix exponential; in addition, the state equation is discretized to a difference equation to improve the computing efficiency. Furthermore, an optimal control of procedure system based on the minimization of a quadratic performance index for state vector and control forces is developed. Finally, the effect of dynamic response of the cable, which is produced by viscoelastic parameters, is testified by the research of digital simulation.展开更多
Despite their superior control performance,active vibration control techniques cannot be widely used in some engineering fields because of their substantial power demand in controlling large-scale structures.As an inn...Despite their superior control performance,active vibration control techniques cannot be widely used in some engineering fields because of their substantial power demand in controlling large-scale structures.As an innovative solution to this problem,an unprecedented self-powered active vibration control system was developped in this study.The topological design,working mechanism,and power flow of the proposed system are presented herein.The self-powering ability of the system was confirmed based on a detailed power flow analysis of vibration control processes.A self-powered actively controlled actuator was designed and applied to a scaled active vibration isolation table.The feasibility and effectiveness of the innovative system were successfully validated through a series of analytical,numerical,and experimental investigations.The setup and control strategy of the proposed system can be readily extended to diversified active vibration control applications in various engineering fields.展开更多
While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive...While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment resuits show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.展开更多
A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of ...A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.展开更多
The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical ...The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical described in the time domain, it is transferred into the Fourier domain, where the frequencies response functions regarding bearing housing vibrations, foundation vibrations and actuator forces are derived. Afterwards, the mathematical coherences are described in the Laplace domain and a worst case procedure is presented to analyze the vibration stability. For special controller structures in combination with certain feedback strategies, a calculation method is shown, where the controller parameters can be directly implemented into the stiffness matrix, damping matrix and mass matrix. Additionally a numerical example is presented, where the vibration stability and the frequency response functions are analyzed.展开更多
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance...A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.展开更多
The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting...The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting to the controller and the disturbances, but there is only one controller. It is a local control system, the system parameters depend only on the characteristics of the structure bounded by the sensors and the controller, and we need not take into account. the boundary conditions and the properties of structures outside of this held. The system is efficient when a structure vibrates in middle and high frequency regions. Some control design rules are developed from the calculation results.展开更多
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is, active and passive control techniques. In this pap...Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is, active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differential equations having both quadratic and cubic nonlinearties. The system describes the vibration of an aircraft tail. The system is subjected to multi-external excitation forces. The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approximate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are studied numerically. Various resonance cases are investigated. A comparison is made with the available published work.展开更多
A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides ad...A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system.Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results.The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods.This makes the NIRC controlled system robust to excitation frequency variations.展开更多
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
文摘Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.
文摘Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2011CB711100)the National Natural Science Foundation of China(Nos.10672017 and11172084)
文摘The piezoelectric materials are used to investigate the active vibration control of ordered/disordered periodic two-span beams. The equation of motion of each sub-beam with piezoelectric patches is established based on Hamilton's principle with an assumed mode method. The velocity feedback control algorithm is used to design the controller. The free and forced vibration behaviors of the two-span beams with the piezoelectric actuators and sensors are analyzed. The vibration properties of the disordered two-span beams caused by misplacing the middle support are also researched. In addition, the effects of the length disorder degree on the vibration performances of the disordered beams are investigated. From the numerical results, it can be concluded that the disorder in the length of the periodic two-span beams will cause vibration localizations of the free and forced vibrations of the structure, and the vibration localization phenomenon will be more and more obvious when the length difference between the two sub-beams increases. Moreover, when the velocity feedback control is used, both the forced and the free vibrations will be suppressed. Meanwhile, the vibration behaviors of the two-span beam are tuned.
文摘Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
文摘The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.
基金National Natural Science Foundation of China(11290153)。
文摘The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the number of modes to be considered is quite large after modal truncation,while only a limited number of actuators and sensors are to be placed.This makes it hard to determine the actuator and sensor locations with the existing placement methods in the literature such as the methods based on the controllability/observability grammian.To deal with this issue,an actuator and sensor placement method based on singular value decompositions(SVD)of the input and output matrices is proposed,which guarantees the modal controllability and observability of the system.The effectiveness of the SVD based method is verified through numerical simulations in which comparisons are conducted between randomly-chosen locations and the optimal ones obtained by a genetic algorithm.
文摘This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanism is decoupled by means of the complex mode theory. The state-space expression of the controlled system is developed, which includes the system noise and the observation noise. Moreover, a discrete linear quadratic Gaussian (LQG) state feedback controller and a discrete Kalman filter are designed separately. Finally, the proposed method is applied to the on-line vibration control of a macroscopically smart mechanism. The experimental results reveal that the strain amplitude of the flexible link ig suppressed by 80% and the dynamic performance of mechanism has been ameliorated significantly.
文摘The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of third order nonlinear ordinary differential equations which are solved by Runge-Kutta numerical integration procedures. Only after the transverse vibration of the plane is considered and the nonlinear terms are neglected, can the nonlinear ordinary differential equations be expressed as a continuous state equation in the state space. The matrix of state transition is approximated stepwise by the matrix exponential; in addition, the state equation is discretized to a difference equation to improve the computing efficiency. Furthermore, an optimal control of procedure system based on the minimization of a quadratic performance index for state vector and control forces is developed. Finally, the effect of dynamic response of the cable, which is produced by viscoelastic parameters, is testified by the research of digital simulation.
基金supported by the Research Grants Council of Hong Kong through General Research Fund (GRF) projects (15214620 and Poly U 152246/18E)Research Impact Fund (Poly U R5020-18)the NSFC/RGC Joint Research Scheme (N_Poly U533/17 and 51761165022)
文摘Despite their superior control performance,active vibration control techniques cannot be widely used in some engineering fields because of their substantial power demand in controlling large-scale structures.As an innovative solution to this problem,an unprecedented self-powered active vibration control system was developped in this study.The topological design,working mechanism,and power flow of the proposed system are presented herein.The self-powering ability of the system was confirmed based on a detailed power flow analysis of vibration control processes.A self-powered actively controlled actuator was designed and applied to a scaled active vibration isolation table.The feasibility and effectiveness of the innovative system were successfully validated through a series of analytical,numerical,and experimental investigations.The setup and control strategy of the proposed system can be readily extended to diversified active vibration control applications in various engineering fields.
基金Supported by the National Natural Science Foundation of China(No.90716027,51175319)
文摘While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment resuits show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.
基金Supported by the National Natural Science Foundation of China (No. 90716027, 51175319), and Shanghai Talent Development Fund (No.2009020).
文摘A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.
文摘The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical described in the time domain, it is transferred into the Fourier domain, where the frequencies response functions regarding bearing housing vibrations, foundation vibrations and actuator forces are derived. Afterwards, the mathematical coherences are described in the Laplace domain and a worst case procedure is presented to analyze the vibration stability. For special controller structures in combination with certain feedback strategies, a calculation method is shown, where the controller parameters can be directly implemented into the stiffness matrix, damping matrix and mass matrix. Additionally a numerical example is presented, where the vibration stability and the frequency response functions are analyzed.
基金This project is supported by Commission of Science Technology and Industry for National Defense, China.
文摘A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.
基金The project supported by the National Natural Science Foundation of China Post Doctorate Science Fund of China
文摘The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting to the controller and the disturbances, but there is only one controller. It is a local control system, the system parameters depend only on the characteristics of the structure bounded by the sensors and the controller, and we need not take into account. the boundary conditions and the properties of structures outside of this held. The system is efficient when a structure vibrates in middle and high frequency regions. Some control design rules are developed from the calculation results.
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.
文摘Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is, active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differential equations having both quadratic and cubic nonlinearties. The system describes the vibration of an aircraft tail. The system is subjected to multi-external excitation forces. The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approximate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are studied numerically. Various resonance cases are investigated. A comparison is made with the available published work.
文摘A new nonlinear integral resonant controller(NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system.Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results.The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods.This makes the NIRC controlled system robust to excitation frequency variations.