The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the...The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.展开更多
The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) ...The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.展开更多
In this paper, the vibration influence on a monument caused by Chengdu Subway Line 2 is analyzed. Due to its elaborate and unique design, both structural and architectural damages should be avoided. First, the allowab...In this paper, the vibration influence on a monument caused by Chengdu Subway Line 2 is analyzed. Due to its elaborate and unique design, both structural and architectural damages should be avoided. First, the allowable root mean square (RMS) velocity at the foundation of the monument is derived and a site measurement is performed to obtain the background vibrations induced by road traffic. In addition, a train-track coupled model and 3D tunnel-soil-structure coupled finite element models are built to predict the dynamic response of the monument. Prediction models are checked by site measurement in Beijing Subway Line 5. Different kinds of fasteners and train speeds are compared and discussed as well. Results show that: (1) At a train speed of 72 km/h, all the traffic vibrations exceed the low limit no matter what kind of fastener is used, which is mainly due to the contribution of road traffic. Slowing down train speeds can cause effective vibration attenuation; (2) Vibrations drop dramatically with the train speed from 65 to 58 km/h. When the train speed is lower than 58 krn/h, vibrations are lower than allowable value even if the contribution of road traffic is considered.展开更多
基金Projects(50538010,50848046) supported by the National Natural Science Foundation of ChinaProject(BIL07/07) supported by the Research Council of K.U.Leuven and the National Natural Science Foundation of China
文摘The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.
文摘The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.
基金Project supported by the National Natural Science Foundation of China (No. 51008017)the Fundamental Research Funds for the Central Universities (Nos. 2009JBM074 and 2009JBM075), China
文摘In this paper, the vibration influence on a monument caused by Chengdu Subway Line 2 is analyzed. Due to its elaborate and unique design, both structural and architectural damages should be avoided. First, the allowable root mean square (RMS) velocity at the foundation of the monument is derived and a site measurement is performed to obtain the background vibrations induced by road traffic. In addition, a train-track coupled model and 3D tunnel-soil-structure coupled finite element models are built to predict the dynamic response of the monument. Prediction models are checked by site measurement in Beijing Subway Line 5. Different kinds of fasteners and train speeds are compared and discussed as well. Results show that: (1) At a train speed of 72 km/h, all the traffic vibrations exceed the low limit no matter what kind of fastener is used, which is mainly due to the contribution of road traffic. Slowing down train speeds can cause effective vibration attenuation; (2) Vibrations drop dramatically with the train speed from 65 to 58 km/h. When the train speed is lower than 58 krn/h, vibrations are lower than allowable value even if the contribution of road traffic is considered.