Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensi...Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.展开更多
Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monome...Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.展开更多
In this paper, a beam-plate coupled structure is discussed. The derivation of exact expressions for power transfer and numerical computation are carried on. It is found that the SEA techniques may be appropriate for s...In this paper, a beam-plate coupled structure is discussed. The derivation of exact expressions for power transfer and numerical computation are carried on. It is found that the SEA techniques may be appropriate for strong coupled structures and that the general SEA result provides good agreement with the exact calculation when modal overlap is high. The derived formula is applied to predict the coupling loss factor and vibrational energy of substructures. The agreement between the estimated and measured results presents quite well in most cases.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi...The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.展开更多
A modified model, a set of rate equations based on time-dependent correlation function, is used to study vibrational relaxation dynamics in transient grating spectroscopy. The dephasing, the population dynamics, and t...A modified model, a set of rate equations based on time-dependent correlation function, is used to study vibrational relaxation dynamics in transient grating spectroscopy. The dephasing, the population dynamics, and the vibrational coherence concerning two vibrational states are observed respectively in organic dye IR780 perchlorate molecules doped polyvinyl alcohol matrix. The result shows that in addition to the information concerning system-environment interaction and vibrational coherence, the vibrational energy transfer can be described by this modified model.展开更多
The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of C...The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of CHBr 3 and O 2 the secondary reactions generate CO(v). The infrared emission of CO(v→v-1) is detected by TR FTIR. The excitation of H 2O molecules is not observed. By the method of the spectral simulation and the differential technique, 8 rate constants for CO(v)/H 2O system are obtained: (1.7±0.1), (3.4±0.2), (6.2±0.4), (8.0±1.0), (9.0±2.0), (12±3), (16±4) and (18±7) (10 -13cm 3·molecule -1·s -1). At least two reasons lead to the efficient energy transfer. One is the contributions of the rotational energy to the vibational energy defect and the other is the result of the complex collision. With the SSH and ab initio calculations, the quenching mechanism of CO(v) by H 2O is suggested.展开更多
The relaxation of the highly vibrationally excited CO (v=1-8) by CO\-2 is studied by time_resolved Fourier transform infrared emission spectroscopy (TR FTIR). 193 nm laser photolysis of the mixture of CHBr\-3 with O\-...The relaxation of the highly vibrationally excited CO (v=1-8) by CO\-2 is studied by time_resolved Fourier transform infrared emission spectroscopy (TR FTIR). 193 nm laser photolysis of the mixture of CHBr\-3 with O\-2 generates the highly vibrationally excited CO(v) molecules. TR FTIR records the intense infrared emission of CO(v→v-1). The vibrational populations of each level of CO(v) have been determined by the method of spectral simulation. Based on the evolution of the time resolved populations and the differential method, 8 energy transfer rate constants of CO(v=1-8) to CO 2 molecules are obtained: (5.7±0.1), (5.9±0.1), (5.2±0.2), (3.4±0.2), (2.4±0.3), (2.2±0.4), (2.0±0.4) and (1.8±0.6) (10 -14 cm 3·molecule -1·s -1), respectively. A two_channel energy transfer model can explain the feature of the quenching of CO(v) by CO 2. For the lower vibrational states of CO, the vibrational energy transfers preferentially to the υ\-3 mode of CO 2. For the higher levels, the major quenching channel changes to the vibrational energy exchange between CO(v→v-1) and the υ\-1 mode of CO 2.展开更多
文摘Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.
文摘Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.
基金This paper is a part of thesis written by Wang Chong for master degree in Nanjing University
文摘In this paper, a beam-plate coupled structure is discussed. The derivation of exact expressions for power transfer and numerical computation are carried on. It is found that the SEA techniques may be appropriate for strong coupled structures and that the general SEA result provides good agreement with the exact calculation when modal overlap is high. The derived formula is applied to predict the coupling loss factor and vibrational energy of substructures. The agreement between the estimated and measured results presents quite well in most cases.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.
基金supported by the Defense Industrial Technology Development Program of China (Grant No. B1520110002)the PreResearch Foundation of PLA General Armament Department, China (Grant No. 9104C6709101106)the National Natural Science Foundation of China (Grant Nos. 20973050 and 20573028)
文摘A modified model, a set of rate equations based on time-dependent correlation function, is used to study vibrational relaxation dynamics in transient grating spectroscopy. The dephasing, the population dynamics, and the vibrational coherence concerning two vibrational states are observed respectively in organic dye IR780 perchlorate molecules doped polyvinyl alcohol matrix. The result shows that in addition to the information concerning system-environment interaction and vibrational coherence, the vibrational energy transfer can be described by this modified model.
文摘The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of CHBr 3 and O 2 the secondary reactions generate CO(v). The infrared emission of CO(v→v-1) is detected by TR FTIR. The excitation of H 2O molecules is not observed. By the method of the spectral simulation and the differential technique, 8 rate constants for CO(v)/H 2O system are obtained: (1.7±0.1), (3.4±0.2), (6.2±0.4), (8.0±1.0), (9.0±2.0), (12±3), (16±4) and (18±7) (10 -13cm 3·molecule -1·s -1). At least two reasons lead to the efficient energy transfer. One is the contributions of the rotational energy to the vibational energy defect and the other is the result of the complex collision. With the SSH and ab initio calculations, the quenching mechanism of CO(v) by H 2O is suggested.
文摘The relaxation of the highly vibrationally excited CO (v=1-8) by CO\-2 is studied by time_resolved Fourier transform infrared emission spectroscopy (TR FTIR). 193 nm laser photolysis of the mixture of CHBr\-3 with O\-2 generates the highly vibrationally excited CO(v) molecules. TR FTIR records the intense infrared emission of CO(v→v-1). The vibrational populations of each level of CO(v) have been determined by the method of spectral simulation. Based on the evolution of the time resolved populations and the differential method, 8 energy transfer rate constants of CO(v=1-8) to CO 2 molecules are obtained: (5.7±0.1), (5.9±0.1), (5.2±0.2), (3.4±0.2), (2.4±0.3), (2.2±0.4), (2.0±0.4) and (1.8±0.6) (10 -14 cm 3·molecule -1·s -1), respectively. A two_channel energy transfer model can explain the feature of the quenching of CO(v) by CO 2. For the lower vibrational states of CO, the vibrational energy transfers preferentially to the υ\-3 mode of CO 2. For the higher levels, the major quenching channel changes to the vibrational energy exchange between CO(v→v-1) and the υ\-1 mode of CO 2.