In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on...In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.展开更多
This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, i...This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.展开更多
The depth information of the scene indicates the distance between the object and the camera,and depth extraction is a key technology in 3D video system.The emergence of Kinect makes the high resolution depth map captu...The depth information of the scene indicates the distance between the object and the camera,and depth extraction is a key technology in 3D video system.The emergence of Kinect makes the high resolution depth map capturing possible.However,the depth map captured by Kinect can not be directly used due to the existing holes and noises,which needs to be repaired.We propose a texture combined inpainting algorithm in this paper.Firstly,the foreground is segmented combined with the color characteristics of the texture image to repair the foreground of the depth map.Secondly,region growing is used to determine the match region of the hole in the depth map,and to accurately position the match region according to the texture information.Then the match region is weighted to fill the hole.Finally,a Gaussian filter is used to remove the noise in the depth map.Experimental results show that the proposed method can effectively repair the holes existing in the original depth map and get an accurate and smooth depth map,which can be used to render a virtual image with good quality.展开更多
Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts ...Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.展开更多
基金supported by National Natural Science Foundation of China under Grant No.610700800973 Sub-Program Projects under Grant No.2009CB320906+3 种基金National Science and Technology of Major Special Projects under Grant No.2010ZX03004-003S&T Planning Project of Hubei Provincial Department of Education under Grant No. Q20112805H&SPlanning Project of Hubei Provincial Department of Education under Grant No.2011jyte142Science Foundation of HubeiProvincial under Grant No.2010CDB05103
文摘In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.
文摘This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.
基金Supported by the Key Project of National Natural Science Foundation of China(Nos.60832003 and 61172096)major Project of Shanghai Science and Technology Committee(No.10510500500)the Major Innovation Project of Shanghai Municipal Education Commission
文摘The depth information of the scene indicates the distance between the object and the camera,and depth extraction is a key technology in 3D video system.The emergence of Kinect makes the high resolution depth map capturing possible.However,the depth map captured by Kinect can not be directly used due to the existing holes and noises,which needs to be repaired.We propose a texture combined inpainting algorithm in this paper.Firstly,the foreground is segmented combined with the color characteristics of the texture image to repair the foreground of the depth map.Secondly,region growing is used to determine the match region of the hole in the depth map,and to accurately position the match region according to the texture information.Then the match region is weighted to fill the hole.Finally,a Gaussian filter is used to remove the noise in the depth map.Experimental results show that the proposed method can effectively repair the holes existing in the original depth map and get an accurate and smooth depth map,which can be used to render a virtual image with good quality.
基金supported by the National Natural Science Foundation of China(Grant No.60832003)Key Laboratory of Advanced Display and System Application(Shanghai University),Ministry of Education,China(Grant No.P200902)the Key Project of Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.