With the advancement of video recording devices and network infrastructure,we use surveillance cameras to protect our valuable assets.This paper proposes a novel system for encrypting personal information within recor...With the advancement of video recording devices and network infrastructure,we use surveillance cameras to protect our valuable assets.This paper proposes a novel system for encrypting personal information within recorded surveillance videos to enhance efficiency and security.The proposed method leverages Dlib’s CNN-based facial recognition technology to identify Regions of Interest(ROIs)within the video,linking these ROIs to generate unique IDs.These IDs are then combined with a master key to create entity-specific keys,which are used to encrypt the ROIs within the video.This system supports selective decryption,effectively protecting personal information using surveillance footage.Additionally,the system overcomes the limitations of existing ROI recognition technologies by predicting unrecognized frames through post-processing.This research validates the proposed technology through experimental evaluations of execution time and post-processing techniques,ensuring comprehensive personal information protection.Guidelines for setting the thresholds used in this process are also provided.Implementing the proposed method could serve as an effective solution to security vulnerabilities that traditional approaches fail to address.展开更多
Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD pat...Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.展开更多
BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram ...BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram using internal and external validation to predict survival in patients with ampullary adenocarcinoma.METHODS Data were sourced from the surveillance,epidemiology,and end results stat database.The patients in the database were randomized in a 7:3 ratio into training and validation groups.Using Cox regression univariate and multivariate analyses in the training group,we identified independent risk factors for overall survival and cancer-specific survival to develop the nomogram.The nomogram was validated with a cohort of patients from the First Affiliated Hospital of the Army Medical University.RESULTS For overall and cancer-specific survival,12(sex,age,race,lymph node ratio,tumor size,chemotherapy,surgical modality,T stage,tumor differentiation,brain metastasis,lung metastasis,and extension)and 6(age;surveillance,epidemiology,and end results stage;lymph node ratio;chemotherapy;surgical modality;and tumor differentiation)independent risk factors,respectively,were incorporated into the nomogram.The area under the curve values at 1,3,and 5 years,respectively,were 0.807,0.842,and 0.826 for overall survival and 0.816,0.835,and 0.841 for cancer-specific survival.The internal and external validation cohorts indicated good consistency of the nomogram.CONCLUSION The dynamic nomogram offers robust predictive efficacy for the overall and cancer-specific survival of ampullary adenocarcinoma.展开更多
Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as ...Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.展开更多
BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.Thi...BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.This virus has shown significant challenges,especially for senior citizens,patients with other underlying illnesses,or those with a sedentary lifestyle.Serological tests conducted early on have helped identify how the virus is transmitted and how to curb its spread.The study hypothesis was that the rapid serological test for SARS-CoV-2 antibodies could indicate the immunoreactive profile during the COVID-19 pandemic in a university population.AIM To conduct active surveillance for serological expression of anti-SARS-CoV-2 antibodies in individuals within a university setting during the COVID-19 pandemic.METHODS This sectional study by convenience sampling was conducted in a large university in Niteroi-RJ,Brazil,from March 2021 to July 2021.The study population consisted of students,faculty,and administrative staff employed by the university.A total of 3433 faculty members,60703 students,and 3812 administrative staff were invited to participate.Data were gathered through rapid serological tests to detect immunoglobulin(Ig)M and IgG against SARS-CoV-2.Theχ²or Fisher's exact test was used to conduct statistical analysis.A 0.20 significance level was adopted for variable selection in a multiple logistic regression model to evaluate associations.RESULTS A total of 1648 individuals were enrolled in the study.The proportion of COVID-19 positivity was 164/1648(9.8%).The adjusted logistic model indicate a positive association between the expression of IgM or IgG and age[odds ratio(OR)=1.16,95%CI:1.02-1.31](P<0.0024),individuals who had been in contact with a COVID-19-positive case(OR=3.49,95%CI:2.34-5.37)(P<0.001),those who had received the COVID-19 vaccine(OR=2.33,95%CI:1.61-3.35)(P<0.001)and social isolation(OR=0.59,95%CI:0.41-0.84)(P<0.004).The likelihood of showing a positive result increased by 16%with every ten-year increment.Conversely,adherence to social distancing measures decreased the likelihood by 41%.CONCLUSION These findings evidenced that the population became more exposed to the virus as individuals discontinued social distancing practices,thereby increasing the risk of infection for themselves.展开更多
This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction su...This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.展开更多
In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firear...In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firearms.which is why an automated weapon detection system is needed.Various automated convolutional neural networks(CNN)weapon detection systems have been proposed in the past to generate good results.However,These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system.These models have a high rate of false negatives because they often fail to detect the guns due to the low quality and visibility issues of surveillance videos.This research work aims to minimize the rate of false negatives and false positives in weapon detection while keeping the speed of detection as a key parameter.The proposed framework is based on You Only Look Once(YOLO)and Area of Interest(AOI).Initially,themodels take pre-processed frames where the background is removed by the use of the Gaussian blur algorithm.The proposed architecture will be assessed through various performance parameters such as False Negative,False Positive,precision,recall rate,and F1 score.The results of this research work make it clear that due to YOLO-v5s high recall rate and speed of detection are achieved.Speed reached 0.010 s per frame compared to the 0.17 s of the Faster R-CNN.It is promising to be used in the field of security and weapon detection.展开更多
In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior(human standing) for the construction of a smart campus. Based on deep learning, we propose an intellige...In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior(human standing) for the construction of a smart campus. Based on deep learning, we propose an intelligentstanding human detection (ISHD) method based on an improved single shot multibox detector to detect thetarget of standing human posture in the scene frame of exam room video surveillance at a specific examinationstage. ISHD combines the MobileNet network in a single shot multibox detector network, improves the posturefeature extractor of a standing person, merges prior knowledge, and introduces transfer learning in the trainingstrategy, which greatly reduces the computation amount, improves the detection accuracy, and reduces the trainingdifficulty. The experiment proves that the model proposed in this paper has a better detection ability for the smalland medium-sized standing human body posture in video test scenes on the EMV-2 dataset.展开更多
Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysi...In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.展开更多
Intelligent video surveillance for elderly people living alone using Omni-directional Vision Sensor (ODVS) is an important application in the field of intelligent video surveillance. In this paper, an ODVS is utilized...Intelligent video surveillance for elderly people living alone using Omni-directional Vision Sensor (ODVS) is an important application in the field of intelligent video surveillance. In this paper, an ODVS is utilized to provide a 360° panoramic image for obtaining the real-time situation for the elderly at home. Some algorithms such as motion object detection, motion object tracking, posture detection, behavior analysis are used to implement elderly monitoring. For motion detection and object tracking, a method based on MHoEI(Motion History or Energy Images) is proposed to obtain the trajectory and the minimum bounding rectangle information for the elderly. The posture of the elderly is judged by the aspect ratio of the minimum bounding rectangle. And there are the different aspect ratios in accordance with the different distance between the object and ODVS. In order to obtain activity rhythm and detect variously behavioral abnormality for the elderly, a detection method is proposed using time, space, environment, posture and action to describe, analyze and judge the various behaviors of the elderly in the paper. In addition, the relationship between the panoramic image coordinates and the ground positions is acquired by using ODVS calibration. The experiment result shows that the above algorithm can meet elderly surveillance demand and has a higher recognizable rate.展开更多
Due to the increasing demand for developing a secure and smart living environment, the intelligent video surveillance technology has attracted considerable attention. Building an automatic, reliable, secure, and intel...Due to the increasing demand for developing a secure and smart living environment, the intelligent video surveillance technology has attracted considerable attention. Building an automatic, reliable, secure, and intelligent video surveillance system has spawned large research projects and triggered many popular research topics in several international conferences and workshops recently. This special issue of Journal of ElecWonic Science and Technology (JEST) aims to present recent advances in video surveillance systems which address the observation of people in an environment, leading to a real-time description of their actions and interactions.展开更多
:In recent years,video surveillance application played a significant role in our daily lives.Images taken during foggy and haze weather conditions for video surveillance application lose their authenticity and hence r...:In recent years,video surveillance application played a significant role in our daily lives.Images taken during foggy and haze weather conditions for video surveillance application lose their authenticity and hence reduces the visibility.The reason behind visibility enhancement of foggy and haze images is to help numerous computer and machine vision applications such as satellite imagery,object detection,target killing,and surveillance.To remove fog and enhance visibility,a number of visibility enhancement algorithms and methods have been proposed in the past.However,these techniques suffer from several limitations that place strong obstacles to the real world outdoor computer vision applications.The existing techniques do not perform well when images contain heavy fog,large white region and strong atmospheric light.This research work proposed a new framework to defog and dehaze the image in order to enhance the visibility of foggy and haze images.The proposed framework is based on a Conditional generative adversarial network(CGAN)with two networks;generator and discriminator,each having distinct properties.The generator network generates fog-free images from foggy images and discriminator network distinguishes between the restored image and the original fog-free image.Experiments are conducted on FRIDA dataset and haze images.To assess the performance of the proposed method on fog dataset,we use PSNR and SSIM,and for Haze dataset use e,r−,andσas performance metrics.Experimental results shows that the proposed method achieved higher values of PSNR and SSIM which is 18.23,0.823 and lower values produced by the compared method which are 13.94,0.791 and so on.Experimental results demonstrated that the proposed framework Has removed fog and enhanced the visibility of foggy and hazy images.展开更多
This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveill...This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).展开更多
Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video survei...Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification.The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention.Human action recognition(HAR)is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level.The advancements of the DL models help to accomplish improved recognition performance.In this view,this paper presents a smart deep-based human behavior classification(SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering(AMF)based pre-processing to reduce the noise content.Also,the capsule network(CapsNet)model is utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet model takes place utilizing the Adam optimizer.Finally,the differential evolution(DE)with stacked autoencoder(SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The performance validation of the SDL-HBC technique takes place using two benchmark datasets such as the KTH dataset.The experimental outcomes reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches with maximum accuracy of 0.9922.展开更多
In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous e...In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous events manually in thesemassive video records since they happen infrequently and with a low probability in real-world monitoring systems.Therefore,intelligent surveillance is a requirement of the modern day,as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies.In this article,we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance video(ADSV).At the input of the ADSV,a shots boundary detection technique is used to segment prominent frames.Next,The Lightweight ConvolutionNeuralNetwork(LWCNN)model receives the segmented frames to extract spatial and temporal information from the intermediate layer.Following that,spatial and temporal features are learned using Long Short-Term Memory(LSTM)cells and Attention Network from a series of frames for each anomalous activity in a sample.To detect motion and action,the LWCNN received chronologically sorted frames.Finally,the anomaly activity in the video is identified using the proposed trained ADSV model.Extensive experiments are conducted on complex and challenging benchmark datasets.In addition,the experimental results have been compared to state-ofthe-artmethodologies,and a significant improvement is attained,demonstrating the efficiency of our ADSV method.展开更多
Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the...Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the pairs of two frames with a k-frame distance is utilized to obtain coarse object masks. Usually, object regions in these coarse masks have discontinuous boundaries and some holes. Region growing with the distance constraint is proposed to compensate these coarse object regions in spatial domain, followed by filling holes. The added distance constraint can prevent object regions from growing infinitely. The proposed filling holes method is simple and effective. To solve the temporarily stopping problem of moving objects, temporal compensation is proposed to compensate the object mask by utilizing temporal coherence of moving objects in temporal domain. The proposed detection algorithm can extract moving objects as completely as possible. Experimental results have successfully demonstrated the validity of the proposed algorithm.展开更多
For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful i...For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models.展开更多
Video synopsis is an effective way to easily summarize long-recorded surveillance videos.The omnidirectional view allows the observer to select the desired fields of view(FoV)from the different FoVavailable for spheri...Video synopsis is an effective way to easily summarize long-recorded surveillance videos.The omnidirectional view allows the observer to select the desired fields of view(FoV)from the different FoVavailable for spherical surveillance video.By choosing to watch one portion,the observer misses out on the events occurring somewhere else in the spherical scene.This causes the observer to experience fear of missing out(FOMO).Hence,a novel personalized video synopsis approach for the generation of non-spherical videos has been introduced to address this issue.It also includes an action recognition module that makes it easy to display necessary actions by prioritizing them.This work minimizes and maximizes multiple goals such as loss of activity,collision,temporal consistency,length,show,and important action cost respectively.The performance of the proposed framework is evaluated through extensive simulation and compared with the state-of-art video synopsis optimization algorithms.Experimental results suggest that some constraints are better optimized by using the latest metaheuristic optimization algorithms to generate compact personalized synopsis videos from spherical surveillance videos.展开更多
Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In...Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.展开更多
基金supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)funded by the Korea Government (MIST),Development of Collection and Integrated Analysis Methods of Automotive Inter and Intra System Artifacts through Construction of Event-Based Experimental System,under RS-2022-II221022.
文摘With the advancement of video recording devices and network infrastructure,we use surveillance cameras to protect our valuable assets.This paper proposes a novel system for encrypting personal information within recorded surveillance videos to enhance efficiency and security.The proposed method leverages Dlib’s CNN-based facial recognition technology to identify Regions of Interest(ROIs)within the video,linking these ROIs to generate unique IDs.These IDs are then combined with a master key to create entity-specific keys,which are used to encrypt the ROIs within the video.This system supports selective decryption,effectively protecting personal information using surveillance footage.Additionally,the system overcomes the limitations of existing ROI recognition technologies by predicting unrecognized frames through post-processing.This research validates the proposed technology through experimental evaluations of execution time and post-processing techniques,ensuring comprehensive personal information protection.Guidelines for setting the thresholds used in this process are also provided.Implementing the proposed method could serve as an effective solution to security vulnerabilities that traditional approaches fail to address.
文摘Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.
基金Supported by the Appropriate Technology Promotion Program in Chongqing,No.2023jstg005.
文摘BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram using internal and external validation to predict survival in patients with ampullary adenocarcinoma.METHODS Data were sourced from the surveillance,epidemiology,and end results stat database.The patients in the database were randomized in a 7:3 ratio into training and validation groups.Using Cox regression univariate and multivariate analyses in the training group,we identified independent risk factors for overall survival and cancer-specific survival to develop the nomogram.The nomogram was validated with a cohort of patients from the First Affiliated Hospital of the Army Medical University.RESULTS For overall and cancer-specific survival,12(sex,age,race,lymph node ratio,tumor size,chemotherapy,surgical modality,T stage,tumor differentiation,brain metastasis,lung metastasis,and extension)and 6(age;surveillance,epidemiology,and end results stage;lymph node ratio;chemotherapy;surgical modality;and tumor differentiation)independent risk factors,respectively,were incorporated into the nomogram.The area under the curve values at 1,3,and 5 years,respectively,were 0.807,0.842,and 0.826 for overall survival and 0.816,0.835,and 0.841 for cancer-specific survival.The internal and external validation cohorts indicated good consistency of the nomogram.CONCLUSION The dynamic nomogram offers robust predictive efficacy for the overall and cancer-specific survival of ampullary adenocarcinoma.
文摘Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.
文摘BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.This virus has shown significant challenges,especially for senior citizens,patients with other underlying illnesses,or those with a sedentary lifestyle.Serological tests conducted early on have helped identify how the virus is transmitted and how to curb its spread.The study hypothesis was that the rapid serological test for SARS-CoV-2 antibodies could indicate the immunoreactive profile during the COVID-19 pandemic in a university population.AIM To conduct active surveillance for serological expression of anti-SARS-CoV-2 antibodies in individuals within a university setting during the COVID-19 pandemic.METHODS This sectional study by convenience sampling was conducted in a large university in Niteroi-RJ,Brazil,from March 2021 to July 2021.The study population consisted of students,faculty,and administrative staff employed by the university.A total of 3433 faculty members,60703 students,and 3812 administrative staff were invited to participate.Data were gathered through rapid serological tests to detect immunoglobulin(Ig)M and IgG against SARS-CoV-2.Theχ²or Fisher's exact test was used to conduct statistical analysis.A 0.20 significance level was adopted for variable selection in a multiple logistic regression model to evaluate associations.RESULTS A total of 1648 individuals were enrolled in the study.The proportion of COVID-19 positivity was 164/1648(9.8%).The adjusted logistic model indicate a positive association between the expression of IgM or IgG and age[odds ratio(OR)=1.16,95%CI:1.02-1.31](P<0.0024),individuals who had been in contact with a COVID-19-positive case(OR=3.49,95%CI:2.34-5.37)(P<0.001),those who had received the COVID-19 vaccine(OR=2.33,95%CI:1.61-3.35)(P<0.001)and social isolation(OR=0.59,95%CI:0.41-0.84)(P<0.004).The likelihood of showing a positive result increased by 16%with every ten-year increment.Conversely,adherence to social distancing measures decreased the likelihood by 41%.CONCLUSION These findings evidenced that the population became more exposed to the virus as individuals discontinued social distancing practices,thereby increasing the risk of infection for themselves.
基金supported by the“MOST”under Grant No.103-2221-E-468-008-MY2
文摘This paper presents a human detection system in a vision-based hospital surveillance environment. The system is composed of three subsystems, i.e. background segmentation subsystem (BSS), human feature extraction subsystem (HFES), and human recognition subsystem (HRS). The codebook background model is applied in the BSS, the histogram of oriented gradients (HOG) features are used in the HFES, and the support vector machine (SVM) classification is employed in the HRS. By means of the integration of these subsystems, the human detection in a vision-based hospital surveillance environment is performed. Experimental results show that the proposed system can effectively detect most of the people in hospital surveillance video sequences.
基金We deeply acknowledge Taif University for Supporting and funding this study through Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firearms.which is why an automated weapon detection system is needed.Various automated convolutional neural networks(CNN)weapon detection systems have been proposed in the past to generate good results.However,These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system.These models have a high rate of false negatives because they often fail to detect the guns due to the low quality and visibility issues of surveillance videos.This research work aims to minimize the rate of false negatives and false positives in weapon detection while keeping the speed of detection as a key parameter.The proposed framework is based on You Only Look Once(YOLO)and Area of Interest(AOI).Initially,themodels take pre-processed frames where the background is removed by the use of the Gaussian blur algorithm.The proposed architecture will be assessed through various performance parameters such as False Negative,False Positive,precision,recall rate,and F1 score.The results of this research work make it clear that due to YOLO-v5s high recall rate and speed of detection are achieved.Speed reached 0.010 s per frame compared to the 0.17 s of the Faster R-CNN.It is promising to be used in the field of security and weapon detection.
基金supported by the Natural Science Foundation of China 62102147National Science Foundation of Hunan Province 2022JJ30424,2022JJ50253,and 2022JJ30275+2 种基金Scientific Research Project of Hunan Provincial Department of Education 21B0616 and 21B0738Hunan University of Arts and Sciences Ph.D.Start-Up Project BSQD02,20BSQD13the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering.
文摘In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior(human standing) for the construction of a smart campus. Based on deep learning, we propose an intelligentstanding human detection (ISHD) method based on an improved single shot multibox detector to detect thetarget of standing human posture in the scene frame of exam room video surveillance at a specific examinationstage. ISHD combines the MobileNet network in a single shot multibox detector network, improves the posturefeature extractor of a standing person, merges prior knowledge, and introduces transfer learning in the trainingstrategy, which greatly reduces the computation amount, improves the detection accuracy, and reduces the trainingdifficulty. The experiment proves that the model proposed in this paper has a better detection ability for the smalland medium-sized standing human body posture in video test scenes on the EMV-2 dataset.
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
文摘In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.
文摘Intelligent video surveillance for elderly people living alone using Omni-directional Vision Sensor (ODVS) is an important application in the field of intelligent video surveillance. In this paper, an ODVS is utilized to provide a 360° panoramic image for obtaining the real-time situation for the elderly at home. Some algorithms such as motion object detection, motion object tracking, posture detection, behavior analysis are used to implement elderly monitoring. For motion detection and object tracking, a method based on MHoEI(Motion History or Energy Images) is proposed to obtain the trajectory and the minimum bounding rectangle information for the elderly. The posture of the elderly is judged by the aspect ratio of the minimum bounding rectangle. And there are the different aspect ratios in accordance with the different distance between the object and ODVS. In order to obtain activity rhythm and detect variously behavioral abnormality for the elderly, a detection method is proposed using time, space, environment, posture and action to describe, analyze and judge the various behaviors of the elderly in the paper. In addition, the relationship between the panoramic image coordinates and the ground positions is acquired by using ODVS calibration. The experiment result shows that the above algorithm can meet elderly surveillance demand and has a higher recognizable rate.
文摘Due to the increasing demand for developing a secure and smart living environment, the intelligent video surveillance technology has attracted considerable attention. Building an automatic, reliable, secure, and intelligent video surveillance system has spawned large research projects and triggered many popular research topics in several international conferences and workshops recently. This special issue of Journal of ElecWonic Science and Technology (JEST) aims to present recent advances in video surveillance systems which address the observation of people in an environment, leading to a real-time description of their actions and interactions.
基金We deeply acknowledge Taif University for Supporting and funding this study through Taif University Researchers Supporting Project number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘:In recent years,video surveillance application played a significant role in our daily lives.Images taken during foggy and haze weather conditions for video surveillance application lose their authenticity and hence reduces the visibility.The reason behind visibility enhancement of foggy and haze images is to help numerous computer and machine vision applications such as satellite imagery,object detection,target killing,and surveillance.To remove fog and enhance visibility,a number of visibility enhancement algorithms and methods have been proposed in the past.However,these techniques suffer from several limitations that place strong obstacles to the real world outdoor computer vision applications.The existing techniques do not perform well when images contain heavy fog,large white region and strong atmospheric light.This research work proposed a new framework to defog and dehaze the image in order to enhance the visibility of foggy and haze images.The proposed framework is based on a Conditional generative adversarial network(CGAN)with two networks;generator and discriminator,each having distinct properties.The generator network generates fog-free images from foggy images and discriminator network distinguishes between the restored image and the original fog-free image.Experiments are conducted on FRIDA dataset and haze images.To assess the performance of the proposed method on fog dataset,we use PSNR and SSIM,and for Haze dataset use e,r−,andσas performance metrics.Experimental results shows that the proposed method achieved higher values of PSNR and SSIM which is 18.23,0.823 and lower values produced by the compared method which are 13.94,0.791 and so on.Experimental results demonstrated that the proposed framework Has removed fog and enhanced the visibility of foggy and hazy images.
文摘This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).
文摘Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification.The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention.Human action recognition(HAR)is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level.The advancements of the DL models help to accomplish improved recognition performance.In this view,this paper presents a smart deep-based human behavior classification(SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering(AMF)based pre-processing to reduce the noise content.Also,the capsule network(CapsNet)model is utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet model takes place utilizing the Adam optimizer.Finally,the differential evolution(DE)with stacked autoencoder(SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The performance validation of the SDL-HBC technique takes place using two benchmark datasets such as the KTH dataset.The experimental outcomes reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches with maximum accuracy of 0.9922.
基金This research was supported by the Chung-Ang University Research Scholarship Grants in 2021 and the Culture,Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2022(Project Name:Development of Digital Quarantine and Operation Technologies for Creation of Safe Viewing Environment in Cultural Facilities,Project Number:R2021040028,Contribution Rate:100%).
文摘In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous events manually in thesemassive video records since they happen infrequently and with a low probability in real-world monitoring systems.Therefore,intelligent surveillance is a requirement of the modern day,as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies.In this article,we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance video(ADSV).At the input of the ADSV,a shots boundary detection technique is used to segment prominent frames.Next,The Lightweight ConvolutionNeuralNetwork(LWCNN)model receives the segmented frames to extract spatial and temporal information from the intermediate layer.Following that,spatial and temporal features are learned using Long Short-Term Memory(LSTM)cells and Attention Network from a series of frames for each anomalous activity in a sample.To detect motion and action,the LWCNN received chronologically sorted frames.Finally,the anomaly activity in the video is identified using the proposed trained ADSV model.Extensive experiments are conducted on complex and challenging benchmark datasets.In addition,the experimental results have been compared to state-ofthe-artmethodologies,and a significant improvement is attained,demonstrating the efficiency of our ADSV method.
基金National Natural Science Foundation of China (No.60502034)
文摘Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the pairs of two frames with a k-frame distance is utilized to obtain coarse object masks. Usually, object regions in these coarse masks have discontinuous boundaries and some holes. Region growing with the distance constraint is proposed to compensate these coarse object regions in spatial domain, followed by filling holes. The added distance constraint can prevent object regions from growing infinitely. The proposed filling holes method is simple and effective. To solve the temporarily stopping problem of moving objects, temporal compensation is proposed to compensate the object mask by utilizing temporal coherence of moving objects in temporal domain. The proposed detection algorithm can extract moving objects as completely as possible. Experimental results have successfully demonstrated the validity of the proposed algorithm.
文摘For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models.
文摘Video synopsis is an effective way to easily summarize long-recorded surveillance videos.The omnidirectional view allows the observer to select the desired fields of view(FoV)from the different FoVavailable for spherical surveillance video.By choosing to watch one portion,the observer misses out on the events occurring somewhere else in the spherical scene.This causes the observer to experience fear of missing out(FOMO).Hence,a novel personalized video synopsis approach for the generation of non-spherical videos has been introduced to address this issue.It also includes an action recognition module that makes it easy to display necessary actions by prioritizing them.This work minimizes and maximizes multiple goals such as loss of activity,collision,temporal consistency,length,show,and important action cost respectively.The performance of the proposed framework is evaluated through extensive simulation and compared with the state-of-art video synopsis optimization algorithms.Experimental results suggest that some constraints are better optimized by using the latest metaheuristic optimization algorithms to generate compact personalized synopsis videos from spherical surveillance videos.
基金supported by the National Natural Science Foundation of China under Grant No. 61175007the National Key Technologies R&D Program under Grant No. 2012BAH07B01the National Key Basic Research Program of China (973 Program) under Grant No. 2012CB316302
文摘Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.