In this paper, we propose a novel framework to encrypt surveillance videos. Although a few encryption schemes have been proposed in the literature, they are not sufficiently efficient due to the lack of full considera...In this paper, we propose a novel framework to encrypt surveillance videos. Although a few encryption schemes have been proposed in the literature, they are not sufficiently efficient due to the lack of full consideration of the characteristics of surveillance videos, i.e., intensive global redundancy. By taking advantage of such redundancy, we design a novel method for encrypting such videos. We first train a background dictionary based on several frame observations. Then every single frame is parsed into the background and foreground components. Separation is the key to improve the efficiency of the proposed technique, since encryption is only carried out in the foreground, while the background is skillfully recorded by corresponding background recovery coefficients. Experimental results demonstrate that, compared to the state of the art, the proposed method is robust to known cryptanalytic attacks, and enhances the overall security due to the foreground and background separation. Additionally, our encryption method is faster than competing methods, which do not conduct foreground extraction.展开更多
A selective encryption scheme for region of interest(ROI) of H.264 video is proposed to protect the personal privacy in a video. The most important part of video can be protected with less cost and operation by only e...A selective encryption scheme for region of interest(ROI) of H.264 video is proposed to protect the personal privacy in a video. The most important part of video can be protected with less cost and operation by only encrypting the content of ROIs. Human face regions are selected as ROI and detected by using Gaussian skin color model. Independent ROI encoding is realized with the mechanism of flexible macro-block ordering(FMO). Frames are divided into grid-like slice-groups which can be combined flexibly to form a required ROI.Both luminance component and chrominance component of the macro-blocks in ROI are modified to achieve good encryption quality and location accuracy. In the process of decryption, the encrypted area is located automatically.There is no need to transmit additional position information of ROIs to the end of decryption. The encrypted video is decrypted correctly with the secret key. JM18.4 software is employed to perform the simulation experiment.Experimental results show the accuracy and effectiveness of our scheme to encrypt and decrypt the ROIs in H.264 video.展开更多
基金Acknowledgements This work was supported by National High-tech R&D Program of China (2013AA01A601 ) and the National Natural Science Foundation of China (Grant No. 61332012).
文摘In this paper, we propose a novel framework to encrypt surveillance videos. Although a few encryption schemes have been proposed in the literature, they are not sufficiently efficient due to the lack of full consideration of the characteristics of surveillance videos, i.e., intensive global redundancy. By taking advantage of such redundancy, we design a novel method for encrypting such videos. We first train a background dictionary based on several frame observations. Then every single frame is parsed into the background and foreground components. Separation is the key to improve the efficiency of the proposed technique, since encryption is only carried out in the foreground, while the background is skillfully recorded by corresponding background recovery coefficients. Experimental results demonstrate that, compared to the state of the art, the proposed method is robust to known cryptanalytic attacks, and enhances the overall security due to the foreground and background separation. Additionally, our encryption method is faster than competing methods, which do not conduct foreground extraction.
基金the National Natural Science Foundation of China(No.61073157)
文摘A selective encryption scheme for region of interest(ROI) of H.264 video is proposed to protect the personal privacy in a video. The most important part of video can be protected with less cost and operation by only encrypting the content of ROIs. Human face regions are selected as ROI and detected by using Gaussian skin color model. Independent ROI encoding is realized with the mechanism of flexible macro-block ordering(FMO). Frames are divided into grid-like slice-groups which can be combined flexibly to form a required ROI.Both luminance component and chrominance component of the macro-blocks in ROI are modified to achieve good encryption quality and location accuracy. In the process of decryption, the encrypted area is located automatically.There is no need to transmit additional position information of ROIs to the end of decryption. The encrypted video is decrypted correctly with the secret key. JM18.4 software is employed to perform the simulation experiment.Experimental results show the accuracy and effectiveness of our scheme to encrypt and decrypt the ROIs in H.264 video.