分别在800℃、825℃、850℃焊接温度、30 m in保温时间,3 MPa焊接压力下,进行Ti-6A l-4V钛合金板与304L不锈钢网的真空扩散焊接。对接头组织结构与化学元素扩散进行了扫描电镜与能谱分析,并测试了接头的剪切强度。结果表明:不添加中间...分别在800℃、825℃、850℃焊接温度、30 m in保温时间,3 MPa焊接压力下,进行Ti-6A l-4V钛合金板与304L不锈钢网的真空扩散焊接。对接头组织结构与化学元素扩散进行了扫描电镜与能谱分析,并测试了接头的剪切强度。结果表明:不添加中间过渡层金属,可以成功地实现钛合金板与不锈钢网的扩散焊接,并使接头的剪切强度达到90 MPa以上。不锈钢网中的Fe、N、iCr扩散并固溶到钛合金中,稳定了β相,使钛合金在一定深度上,其组织由原来的α+β双相结构转变为单相的β相。不锈钢中的Cr,由于钛合金中Ti的扩散进入,而在界面发生了上坡扩散现象。这种Cr在不锈钢一定深度内的富集,形成窄长的富Cr区域,冷却后转变为硬脆的σ相。但在焊接接头中没有发现明显其它的金属间化合物或氧化物相的生成,使得接头的机械性能得到了很好的保证。展开更多
大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ91...大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ913577.1)抑制大豆疫霉菌生长,并且过表达GmPR10和Gly m 4l的转基因大豆植株可以提高对大豆疫霉根腐病的抗性。为研究GmPR10和Gly m 4l抑菌机理,本研究利用点突变技术,获得了GmPR10的P-loop结构域突变体(Gly48/Thr48和Gly^51/Arg^51)、Gly m 4l的P-loop结构域突变体(Gly^49/Ile^49和Lys^55/Pro^55)、GmPR10和Gly m 4l的P-loop结构域以及Gly m 4l的Bet v1结构域缺失突变体,并纯化回收相应突变体蛋白,进行体外抑制大豆疫霉菌试验。结果表明,突变或缺失P-loop,Bet v1结构域的GmPR10和Gly m 4l失去了抑制大豆疫霉菌(Race 1)生长的能力,说明P-loop、Bet v 1结构域对GmPR10和Gly m 4l行使抑菌功能至关重要。展开更多
文摘大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ913577.1)抑制大豆疫霉菌生长,并且过表达GmPR10和Gly m 4l的转基因大豆植株可以提高对大豆疫霉根腐病的抗性。为研究GmPR10和Gly m 4l抑菌机理,本研究利用点突变技术,获得了GmPR10的P-loop结构域突变体(Gly48/Thr48和Gly^51/Arg^51)、Gly m 4l的P-loop结构域突变体(Gly^49/Ile^49和Lys^55/Pro^55)、GmPR10和Gly m 4l的P-loop结构域以及Gly m 4l的Bet v1结构域缺失突变体,并纯化回收相应突变体蛋白,进行体外抑制大豆疫霉菌试验。结果表明,突变或缺失P-loop,Bet v1结构域的GmPR10和Gly m 4l失去了抑制大豆疫霉菌(Race 1)生长的能力,说明P-loop、Bet v 1结构域对GmPR10和Gly m 4l行使抑菌功能至关重要。