Background Virtual-reality(VR)fusion techniques have become increasingly popular in recent years,and several previous studies have applied them to laboratory education.However,without a basis for evaluating the effect...Background Virtual-reality(VR)fusion techniques have become increasingly popular in recent years,and several previous studies have applied them to laboratory education.However,without a basis for evaluating the effects of virtual-real fusion on VR in education,many developers have chosen to abandon this expensive and complex set of techniques.Methods In this study,we experimentally investigate the effects of virtual-real fusion on immersion,presence,and learning performance.Each participant was randomly assigned to one of three conditions:a PC environment(PCE)operated by mouse;a VR environment(VRE)operated by controllers;or a VR environment running virtual-real fusion(VR VRFE),operated by real hands.Results The analysis of variance(ANOVA)and t-test results for presence and self-efficacy show significant differences between the PCE*VR-VRFE condition pair.Furthermore,the results show significant differences in the intrinsic value of learning performance for pairs PCE*VR VRFE and VRE*VR-VRFE,and a marginally significant difference was found for the immersion group.Conclusions The results suggest that virtual-real fusion can offer improved immersion,presence,and self efficacy compared to traditional PC environments,as well as a better intrinsic value of learning performance compared to both PC and VR environments.The results also suggest that virtual-real fusion offers a lower sense of presence compared to traditional VR environments.展开更多
In view of the phased development in college education,military training,and new equipment combat training,this paper proposes the virtual-real fusion training model of“five-in-one and step-by-step.”The five trainin...In view of the phased development in college education,military training,and new equipment combat training,this paper proposes the virtual-real fusion training model of“five-in-one and step-by-step.”The five training modes,namely virtual panel training,immersive virtual training,physical(semi-physical)simulation training,training with equipped training equipment,and installation drill,are organically combined in the practical training of new equipment,which improves students' innovation consciousness and serviceability.展开更多
BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of centr...BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of central nervous system tumors.ZFTA fusion-positive lipomatous ependymoma has not been reported to date.CASE SUMMARY We reported a case of a 15-year-old Chinese male who had a sudden convulsion lasting approximately six minutes.Magnetic resonance imaging showed a round cystic shadow of approximately 1.9 cm×1.5 cm×1.9 cm under the right parieto-occipital cortex.Microscopic examination showed characteristic perivascular pseudorosettes and adipose differentiation in the cytoplasm.Immunohisto-chemical staining showed that the tumor cells were negative for cytokeratin,NeuN,Syn and p53,but positive for GFAP,vimentin and S-100 protein.Signi-ficant punctate intracytoplasmic EMA immunoreactivity was observed.The level of Ki-67 was about 5%.Genetic analysis revealed ZFTA:RELA fusion.A cranio-tomy with total excision of the tumor was performed.The follow-up time was 36 months,no evidence of disease recurrence was found in magnetic resonance imaging.CONCLUSION Based on these findings,the patient was diagnosed as a ependymoma with ZFTA fusion and lipomatous differentiation.This case report provides information on the microscopic morphological features of ependymoma with ZFTA fusion and lipomatous differentiation,which can help pathologists to make a definitive diagnosis of this tumor.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富...针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
From virtual technology,the Internet to the meta-universe,around the creation of virtual and real isomorphism and immersive experience venues,an innovative integration model and innovative design concept integrating t...From virtual technology,the Internet to the meta-universe,around the creation of virtual and real isomorphism and immersive experience venues,an innovative integration model and innovative design concept integrating the three major fields of"science and technology+art+culture"have been opened,and the method of today's design industry management model has also been shaped.The author,ground on design originality and experience,intends to source feasible exhibition design tactics from the"presence"design and implementation project that integrates immersive display and performances.From this,efforts are invested in sorting specific innovative design patterns referring to ongoing cases of Metaverse,thereby charting course for prospective design projects.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. Ho...Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s...The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
基金the National Key Research and Development Program of China(2018YFB1004902)the National Natural Science Foundation of China(61772329,61373085)。
文摘Background Virtual-reality(VR)fusion techniques have become increasingly popular in recent years,and several previous studies have applied them to laboratory education.However,without a basis for evaluating the effects of virtual-real fusion on VR in education,many developers have chosen to abandon this expensive and complex set of techniques.Methods In this study,we experimentally investigate the effects of virtual-real fusion on immersion,presence,and learning performance.Each participant was randomly assigned to one of three conditions:a PC environment(PCE)operated by mouse;a VR environment(VRE)operated by controllers;or a VR environment running virtual-real fusion(VR VRFE),operated by real hands.Results The analysis of variance(ANOVA)and t-test results for presence and self-efficacy show significant differences between the PCE*VR-VRFE condition pair.Furthermore,the results show significant differences in the intrinsic value of learning performance for pairs PCE*VR VRFE and VRE*VR-VRFE,and a marginally significant difference was found for the immersion group.Conclusions The results suggest that virtual-real fusion can offer improved immersion,presence,and self efficacy compared to traditional PC environments,as well as a better intrinsic value of learning performance compared to both PC and VR environments.The results also suggest that virtual-real fusion offers a lower sense of presence compared to traditional VR environments.
基金The 2019 Ministry of Education Industry-University Cooperation Collaborative Education Project"Research on the Construction of Economics and Management Professional Data Analysis Laboratory"(Grant Number:201902077020)。
文摘In view of the phased development in college education,military training,and new equipment combat training,this paper proposes the virtual-real fusion training model of“five-in-one and step-by-step.”The five training modes,namely virtual panel training,immersive virtual training,physical(semi-physical)simulation training,training with equipped training equipment,and installation drill,are organically combined in the practical training of new equipment,which improves students' innovation consciousness and serviceability.
文摘BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of central nervous system tumors.ZFTA fusion-positive lipomatous ependymoma has not been reported to date.CASE SUMMARY We reported a case of a 15-year-old Chinese male who had a sudden convulsion lasting approximately six minutes.Magnetic resonance imaging showed a round cystic shadow of approximately 1.9 cm×1.5 cm×1.9 cm under the right parieto-occipital cortex.Microscopic examination showed characteristic perivascular pseudorosettes and adipose differentiation in the cytoplasm.Immunohisto-chemical staining showed that the tumor cells were negative for cytokeratin,NeuN,Syn and p53,but positive for GFAP,vimentin and S-100 protein.Signi-ficant punctate intracytoplasmic EMA immunoreactivity was observed.The level of Ki-67 was about 5%.Genetic analysis revealed ZFTA:RELA fusion.A cranio-tomy with total excision of the tumor was performed.The follow-up time was 36 months,no evidence of disease recurrence was found in magnetic resonance imaging.CONCLUSION Based on these findings,the patient was diagnosed as a ependymoma with ZFTA fusion and lipomatous differentiation.This case report provides information on the microscopic morphological features of ependymoma with ZFTA fusion and lipomatous differentiation,which can help pathologists to make a definitive diagnosis of this tumor.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
文摘针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
文摘From virtual technology,the Internet to the meta-universe,around the creation of virtual and real isomorphism and immersive experience venues,an innovative integration model and innovative design concept integrating the three major fields of"science and technology+art+culture"have been opened,and the method of today's design industry management model has also been shaped.The author,ground on design originality and experience,intends to source feasible exhibition design tactics from the"presence"design and implementation project that integrates immersive display and performances.From this,efforts are invested in sorting specific innovative design patterns referring to ongoing cases of Metaverse,thereby charting course for prospective design projects.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金supported by the National Natural Science Foundation of China(Grant No:81903643)the“Young Talent Support Plan”of Xi'an Jiaotong University,the Shaanxi Province Science and Technology Development Plan Project(Grant No.:2022ZDLSF05-05)+1 种基金the Project of Shaanxi Provincial Administration of Traditional Chinese Medicine(Project No.:2021-03-ZZ-002)the Shaanxi Province Science Fund for Distinguished Young Scholars(Grant No:2023-JC-JQ-59).
文摘Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金the National Natural Science Foundation of China(Grant No.42271436)the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2021MD030,ZR2021QD148).
文摘The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.