The rheological properties of most liquid in nature are between liquids and solids, including both elastic changes and viscosity changes, that is socalled "viscoelastic". Dynamic oscillatory test was used to quantit...The rheological properties of most liquid in nature are between liquids and solids, including both elastic changes and viscosity changes, that is socalled "viscoelastic". Dynamic oscillatory test was used to quantitatively study the distinct viscoelastic behaviors of debris flow slurry in the shear stress conditions for the first time in this study. The debris flow slurry samples were from Jiangjiagou Ravine, Yunnan Province, China. The experimental results were found that at the low and middle stages of shearing, when the angular velocity 09〈72.46 s-1, the loss modulus (G was greater than the storage modulus (G3, i.e. G"〉G'. At the late stage of shearing, when the angular velocity co-72.46 s-x, the storage modulus was greater than or equal to the loss G = G, tan -〈 1 (where phase-shift modulus, i.e. ' 〉 " angle 5=G",/G3, and the debris flow slurry was in a gel state. Therefore, the progress of this experimental study further reveals the mechanism of hyperconcentrated debris flows with a high velocity on low-gradient ravines.展开更多
Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Th...Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.展开更多
Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities.Firstly,valida...Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities.Firstly,validation of the numerical manifold method is carried out by simulations of a longitudinal stress wave propagating through intact and cracked rock bars.The behavior of the stress wave traveling in a one-dimensional rock bar with randomly distributed microcracks is subsequently studied.It is revealed that the highly defected rock bar has significant viscoelasticity to the stress wave propagation.Wave attenuation as well as time delay is affected by the length,quantity,specific stiffness of the distributed microcracks as well as the incident stress wave frequency.The storage and loss moduli of the defected rock are also affected by the microcrack properties;however,they are independent of incident stress wave frequency.展开更多
The effects of weight-average molecular (Mw), molecular weight distribution (MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelasti...The effects of weight-average molecular (Mw), molecular weight distribution (MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and:or broader MWD, as well as higher isotacficity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.展开更多
Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equa...Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.展开更多
This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres(FAM) or silica fume(SF). The initial slump flow of each group has been controlled...This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres(FAM) or silica fume(SF). The initial slump flow of each group has been controlled at similar values by adjusting the superplasticizer dosages. With the help of a coaxial cylinder rheometer, the dynamic rheological behaviors of these mortars are investigated by frequency sweeping in the range of 0-2 Hz under large amplitude oscillatory shear(LAOS). Based on the systematical elaboration of dynamic rheological testing theory, the experimental data are processed according to Lissajous plot fitting to reveal the viscoelastic characteristics. The nonlinearity of response signals is further assessed with Fourier transform(FT) analysis. The parameters, storage modulus G', loss modulus G" and relative amplitude I3/I1 are proposed to clarify the influences of FAM and SF on the stability and energy consumption of local structures and nonlinearity of response torques. The hydration characteristics of various groups well confirmed the rheological phenomenon. This study is beneficial for the preparation and optimization of flow state concrete such as pumping concrete and self-compacting concrete.展开更多
The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and...The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and CaCO_3 fillers with different surface character was investigated by means of dynamic rheological and bound rubber tests for uncured compounds and mechanical properties measurements for the corresponding vulcanites.The results of dynamic tests indicate that with the increase of SA mass fraction...展开更多
The asphalt modifed with different printed circuit boards (PCBs) content (0, 5%, 10%, and 15%) was prepared in this study. The general properties, rheological properties, temperature sensitivity, fatigue resistanc...The asphalt modifed with different printed circuit boards (PCBs) content (0, 5%, 10%, and 15%) was prepared in this study. The general properties, rheological properties, temperature sensitivity, fatigue resistance, and morphology of the PCBs modifed asphalt were investigated by conventional tests, the Brookfeld viscometry tests, the dynamic shear rheometer (DSR) tests, the bending beam rheometer (BBR) tests, and the fuorescence microscopy tests. And the infuence of PCBs content on the above-mentioned properties was analyzed systematically. The results showed that the addition of PCBs could improve the high temperature performance, the low temperature performance, and the temperature sensitivity property of the modifed asphalt, while compromising with the fatigue resistance of the modifed asphalt. With the increase of PCBs content, the modifed asphalt could have better softening points, viscosity, failure temperature, and temperature sensitivity, while its low temperature performance and fatigue resistance became worse to different degree. And the particle size of PCBs became bigger and non-uniform with an increasing PCBs content. According to the above-mentioned properties, the optimum PCBs content was specifed at less than 10% in the modifed asphalt system.展开更多
The polyamide 66 (PA66)/lanthanum acetate blends with small amounts of salt loadings (≤ 1 wt% of PA) have been prepared in a twin-screw extruder. The rheology of PA66 and its blends has been investigated by a rot...The polyamide 66 (PA66)/lanthanum acetate blends with small amounts of salt loadings (≤ 1 wt% of PA) have been prepared in a twin-screw extruder. The rheology of PA66 and its blends has been investigated by a rotational rheometer. The results suggested that with the salt loading in excess of 0.2 wt% the typical Newtonian viscosity plateau disappeared and both the low-frequency complex viscosities η^* and storage modulus G' of blends were much higher than those of neat PA66, the storage modulus was higher than the loss modulus at low frequencies (tanδ〈 1), i.e., the melt changed from a viscoelastic liquid for unfilled polymer to a viscoelastic solid (G′ 〉 G″). While the viscosity followed a strong shear thinning with increasing frequency, the η^* and G′ decreased significantly even lower than those of neat PA66 at high frequencies. The combination of dynamic mechanical analysis (DMA) and X-ray photoelectron spectroscopy (XPS) analysis has revealed that coordination effect occurred between lanthanum and carbonyl oxygen atoms in amide groups of the polymer to form pseudo- crosslinked network structure, which makes the glass transition temperatures (Tg) and storage modulus (E′) of blends enhanced. The network structure formation-destruction and chains entanglement-disentanglement processes at different frequencies are responsible for the above rheological behaviors of blends.展开更多
基金supported by the Youth Talent Team Program of Institute of Mountain Hazards and Environment,CASthe National Natural Science Foundation of China (Grant No.406710260)
文摘The rheological properties of most liquid in nature are between liquids and solids, including both elastic changes and viscosity changes, that is socalled "viscoelastic". Dynamic oscillatory test was used to quantitatively study the distinct viscoelastic behaviors of debris flow slurry in the shear stress conditions for the first time in this study. The debris flow slurry samples were from Jiangjiagou Ravine, Yunnan Province, China. The experimental results were found that at the low and middle stages of shearing, when the angular velocity 09〈72.46 s-1, the loss modulus (G was greater than the storage modulus (G3, i.e. G"〉G'. At the late stage of shearing, when the angular velocity co-72.46 s-x, the storage modulus was greater than or equal to the loss G = G, tan -〈 1 (where phase-shift modulus, i.e. ' 〉 " angle 5=G",/G3, and the debris flow slurry was in a gel state. Therefore, the progress of this experimental study further reveals the mechanism of hyperconcentrated debris flows with a high velocity on low-gradient ravines.
文摘Emulsion of waxy crude oil is one of the common states in the subsea pipeline. At low temperatures in offshore environment, waxy crude oils with water could form the crude oil emulsion gel of oil-in-water emulsion. Thus, the waxy crude oil emulsion viscoelastic behavior for deep sea transportation and restarting pipeline safety is particularly important. By means of MASIII HAAKE rheometer which is produced by German company, waxy crude oil emulsion viscoelastic behavior is explored at different volumetric water contents and different shear stresses. By analyzing the rate of change of shear rate in the initial stage, the influence rules of viscoelastic properties were summarized, with the change of volumetric water content and the applied shear stress and based on the experimental results, the law of emulsion is explained from the micro level. It is proposed that brittle fracture exists between wax crystals, and flexible fracture was found in the interaction between water droplets and wax crystals.
文摘Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities.Firstly,validation of the numerical manifold method is carried out by simulations of a longitudinal stress wave propagating through intact and cracked rock bars.The behavior of the stress wave traveling in a one-dimensional rock bar with randomly distributed microcracks is subsequently studied.It is revealed that the highly defected rock bar has significant viscoelasticity to the stress wave propagation.Wave attenuation as well as time delay is affected by the length,quantity,specific stiffness of the distributed microcracks as well as the incident stress wave frequency.The storage and loss moduli of the defected rock are also affected by the microcrack properties;however,they are independent of incident stress wave frequency.
基金financially supported by the National Basic Research Program of China(No.2015CB654700(2015CB654706))Special Foundation of Taishan Mountain Scholar Constructive Program+5 种基金National Key Technology R&D Program of China(No.2011BAE26B05)Shandong Provincial Natural Science Fund for Distinguished Young Scholars(No.JQ201213)the National Natural Science Foundation of China(No.21174074)the Nature Science Foundation of Shandong Province(No.ZR2013BM004)Shandong province science and technology development plan(2012GGA05042)support from the Yellow River Delta Scholar program(Office of National University Science&Technology Park Administrative Committee(China University of Petroleum)
文摘The effects of weight-average molecular (Mw), molecular weight distribution (MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and:or broader MWD, as well as higher isotacficity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.
文摘Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.
基金Fundey by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)the National Natural Science Foundations of China(No.51379163)
文摘This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres(FAM) or silica fume(SF). The initial slump flow of each group has been controlled at similar values by adjusting the superplasticizer dosages. With the help of a coaxial cylinder rheometer, the dynamic rheological behaviors of these mortars are investigated by frequency sweeping in the range of 0-2 Hz under large amplitude oscillatory shear(LAOS). Based on the systematical elaboration of dynamic rheological testing theory, the experimental data are processed according to Lissajous plot fitting to reveal the viscoelastic characteristics. The nonlinearity of response signals is further assessed with Fourier transform(FT) analysis. The parameters, storage modulus G', loss modulus G" and relative amplitude I3/I1 are proposed to clarify the influences of FAM and SF on the stability and energy consumption of local structures and nonlinearity of response torques. The hydration characteristics of various groups well confirmed the rheological phenomenon. This study is beneficial for the preparation and optimization of flow state concrete such as pumping concrete and self-compacting concrete.
基金The work was financially supported by the National Basic Research Program of China(No.2005CB623800).
文摘The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and CaCO_3 fillers with different surface character was investigated by means of dynamic rheological and bound rubber tests for uncured compounds and mechanical properties measurements for the corresponding vulcanites.The results of dynamic tests indicate that with the increase of SA mass fraction...
基金funded by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (BK20150038)the Fundamental Research Funds for the Central Universities (2015B21614)the China Postdoctoral Science Foundation (2016M591759)
文摘The asphalt modifed with different printed circuit boards (PCBs) content (0, 5%, 10%, and 15%) was prepared in this study. The general properties, rheological properties, temperature sensitivity, fatigue resistance, and morphology of the PCBs modifed asphalt were investigated by conventional tests, the Brookfeld viscometry tests, the dynamic shear rheometer (DSR) tests, the bending beam rheometer (BBR) tests, and the fuorescence microscopy tests. And the infuence of PCBs content on the above-mentioned properties was analyzed systematically. The results showed that the addition of PCBs could improve the high temperature performance, the low temperature performance, and the temperature sensitivity property of the modifed asphalt, while compromising with the fatigue resistance of the modifed asphalt. With the increase of PCBs content, the modifed asphalt could have better softening points, viscosity, failure temperature, and temperature sensitivity, while its low temperature performance and fatigue resistance became worse to different degree. And the particle size of PCBs became bigger and non-uniform with an increasing PCBs content. According to the above-mentioned properties, the optimum PCBs content was specifed at less than 10% in the modifed asphalt system.
基金financially supported by the National Science-Technology Support Plan Projects(No.2014BAC03B05)the National Natural Science Foundation of China(No.51373184)Mo ST973 Research Program(Nos.2012CB933801 and 2014CB931803)
文摘The polyamide 66 (PA66)/lanthanum acetate blends with small amounts of salt loadings (≤ 1 wt% of PA) have been prepared in a twin-screw extruder. The rheology of PA66 and its blends has been investigated by a rotational rheometer. The results suggested that with the salt loading in excess of 0.2 wt% the typical Newtonian viscosity plateau disappeared and both the low-frequency complex viscosities η^* and storage modulus G' of blends were much higher than those of neat PA66, the storage modulus was higher than the loss modulus at low frequencies (tanδ〈 1), i.e., the melt changed from a viscoelastic liquid for unfilled polymer to a viscoelastic solid (G′ 〉 G″). While the viscosity followed a strong shear thinning with increasing frequency, the η^* and G′ decreased significantly even lower than those of neat PA66 at high frequencies. The combination of dynamic mechanical analysis (DMA) and X-ray photoelectron spectroscopy (XPS) analysis has revealed that coordination effect occurred between lanthanum and carbonyl oxygen atoms in amide groups of the polymer to form pseudo- crosslinked network structure, which makes the glass transition temperatures (Tg) and storage modulus (E′) of blends enhanced. The network structure formation-destruction and chains entanglement-disentanglement processes at different frequencies are responsible for the above rheological behaviors of blends.