A coupled viscoplasticity damage constitutive model for concrete materials is developed within the framework of irreversible thermodynamics. Simultaneously the Hehnholtz free energy function and a non-associated flow ...A coupled viscoplasticity damage constitutive model for concrete materials is developed within the framework of irreversible thermodynamics. Simultaneously the Hehnholtz free energy function and a non-associated flow potential function are given, which include the internal variables of kinematic hardening, isotropic hardening and damage. Results from the numerical simulation show that the model presented can describe the deformatioa properties of the concrete without the formal hypotheses of yield criterion and failure criteria, such as the volume dilatancy under the compression, strain-rate sensitivity, stiffness degradation and stress-softening behavior beyond the peak stress which are brought by damages and fractures. Moreover, we could benefit from the application of the finite element method based oi1 this model under complex loading because of not having to choose different constitutive models based on the deformation level.展开更多
A numerical scheme is presented which enables the use of symmetric equation solvers in tangential stiffness programs for non-associated viscoplastic materials.
This paper presents the parametric variational principle for Perzyna model which is one of the main constitutive relations of viscoplasticity.The principle,by which the potential energy function is minimized under a c...This paper presents the parametric variational principle for Perzyna model which is one of the main constitutive relations of viscoplasticity.The principle,by which the potential energy function is minimized under a constrained condition transformed by the constitutive relations of viscoplasticity, is free from the bound of Drucker's postulate of plastic flow and consequently suitable for solving the nonassociated plastic flow problems. Furthermore, the paper has proven the presented principle and discussed the creep problem.展开更多
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters refl...A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.展开更多
The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical p...The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.展开更多
In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute...In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.展开更多
This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The pr...This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.展开更多
The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep...The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.展开更多
Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was estab...Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect.展开更多
The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction int...The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.展开更多
An additional isotropic internal variable is utilized to extend the Bodner-Partom unified viscoplastic constitutive model (original B-P) to improve the modeling of rate-dependent plasticity and cyclic hardening beha...An additional isotropic internal variable is utilized to extend the Bodner-Partom unified viscoplastic constitutive model (original B-P) to improve the modeling of rate-dependent plasticity and cyclic hardening behaviors of metals. The extended model (new B-P) contains two isotropic internal variables: one plays the role of representing the fast hardening in smaller inelastic strain range, while the other evolutes at slower speed accompanied by larger accumulated inelastic deformation, such as cyclic hardening. To examine the validity of the extended constitutive model, the rate-dependent plasticity of a Ni-base superalloy Udimet 720Li at 650℃ and 700℃ are characterized using both models. Not only numerical simulations are conducted for various loading conditions by implementing both models into ABAOUS using a user material subroutine, also a systematic comparison between two models is completed. Numerical results show that the extended material constants in the new model provide more flexible capability in modeling the inelastic behavior of the material with sound accuracy.展开更多
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca...Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.展开更多
This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central...This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.展开更多
Recently,stress-based dilatancy criteria have become essential tools to design underground facilities in salt formations such as gas storage caverns.However,these criteria can depend critically on the volumetric strai...Recently,stress-based dilatancy criteria have become essential tools to design underground facilities in salt formations such as gas storage caverns.However,these criteria can depend critically on the volumetric strain measurements used to deduce the dilatancy onset.Results from conventional triaxial compression tests can show different volumetric behavior depending on the loading conditions,as well as on the measurement techniques.In order to obtain a quantitative understanding of this problem,an experimental program was carried out and the testing procedure was investigated numerically under homogeneous and heterogeneous stress states.The experimental results showed that the deviatoric stress corresponding to the dilatancy onset was significantly dependent on the measurement techniques.With a heterogeneous stress state,the simulation results revealed that the strain measurements at different scales (referred to as local,hybrid or global) can provide different volumetric results with moderate to significant deviations from the idealized behavior,and hence different onsets of dilatancy.They also proved that,under low confinement,tensile stresses can take place within the compressed specimen,leading to a great deviation of the dilatancy onset from the idealized behavior.From both experimental and numerical investigations,the difference in sensitivity to the measurement techniques between the deviatoric and the volumetric behaviors is explained by the relatively small values of the volumetric strain.The non-ideal laboratory conditions have more impact on this strain than on the deviatoric one.These findings can have implications for the interpretation of the dilatancy behavior of rock salt,and hence on the geomechanical design aspects in salt formations.展开更多
An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in orde...An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.展开更多
The average stretching direction,local rotation angular,and stretching ratio parameters of molecular trains were used to express the rheology deformation.Based on this micro geometrical deformation,the macro deformati...The average stretching direction,local rotation angular,and stretching ratio parameters of molecular trains were used to express the rheology deformation.Based on this micro geometrical deformation,the macro deformation of medium was expressed.Then,using intrinsic elasticity concept,the stress-strain relation was obtained.In this theoretic formulation,the response functions of extension ratio and rotation angular were used to express the rheology feature of medium.For medium composed by incompressible molecular trains,the local rotation angular divides rheology deformation into three kinds:viscoelastic deformation or elasticity enhancement,viscoplastic deformation or elasticity degenerate and constant elasticity range.These results explain the experimental features of rheology deformation well.展开更多
The dynamic torsional buckling and post-buckling of elasto-plastic circular cylindrical shell is studied. By the usage of the Bodner-Partom constitutive relation, the present visco-plastic problem is treated as an ort...The dynamic torsional buckling and post-buckling of elasto-plastic circular cylindrical shell is studied. By the usage of the Bodner-Partom constitutive relation, the present visco-plastic problem is treated as an orthotropic elastic problem. Based on the nonlinear large deflection shell therory, the governing dynamic buckling equation is solved by the Runge-Kutta method, and the critical buckling stress is determined by the B-R criterion. The present paper is mainly focused on the imperfection sensitivity, the strain rate sensitivity, and the dynamic post-buckling characters for the shell loaded dynamically with a constant shear strain rate. Numerical results show that the critical shear stress and imperfection sensitivity will increase with the increase of strain rate. It is found that the elastic buckling stress is more sensitive to imperfection than the visco-plastic buckling. The present research also reveals some dynamic post-buckling characters for the cylindrical shell, and it is shown that the shell will vibrate with the amplitude proportional to the strain rate in elastic buckling but improportional to the strain rate in visco-plastic buckling. An interesting phenomenon is found that when the strain rate is sufficiently high, there is no dynamic visco-plastic buckling occurrence and the shell produces a harmonic oscillation with a very small amplitude.展开更多
Rheologic characteristics of soil are very important in soil mechanics. Almost every aspect of research on soil mechanics deals with rheologic characteristics of soil. Although more than half century has passed, study...Rheologic characteristics of soil are very important in soil mechanics. Almost every aspect of research on soil mechanics deals with rheologic characteristics of soil. Although more than half century has passed, study on rheologic characteristics of soil only made a very small progress, which was due to the two facts: (1 ) the complexity of rheologic characteristics of soil; (2) the research methods based on experimental fOrmulas. Based on thermodynamic theory and endo-chronic theory, a new intrinsic constitutive equation for rheologic characteristic of soil was developed, which combined with two groups of internal state variables and their correlative intrinsic time. The new intrinsic constitutive equation did very well in predict essential features of the rheologic behavior of soil, with which the dilatancy of soil during the rheologic process could be described.展开更多
基金the National Natural Science Foundation of China(No.90410012)
文摘A coupled viscoplasticity damage constitutive model for concrete materials is developed within the framework of irreversible thermodynamics. Simultaneously the Hehnholtz free energy function and a non-associated flow potential function are given, which include the internal variables of kinematic hardening, isotropic hardening and damage. Results from the numerical simulation show that the model presented can describe the deformatioa properties of the concrete without the formal hypotheses of yield criterion and failure criteria, such as the volume dilatancy under the compression, strain-rate sensitivity, stiffness degradation and stress-softening behavior beyond the peak stress which are brought by damages and fractures. Moreover, we could benefit from the application of the finite element method based oi1 this model under complex loading because of not having to choose different constitutive models based on the deformation level.
文摘A numerical scheme is presented which enables the use of symmetric equation solvers in tangential stiffness programs for non-associated viscoplastic materials.
文摘This paper presents the parametric variational principle for Perzyna model which is one of the main constitutive relations of viscoplasticity.The principle,by which the potential energy function is minimized under a constrained condition transformed by the constitutive relations of viscoplasticity, is free from the bound of Drucker's postulate of plastic flow and consequently suitable for solving the nonassociated plastic flow problems. Furthermore, the paper has proven the presented principle and discussed the creep problem.
基金Supported by the National Natural Science Foundation of China (Grant NO. 90410012)
文摘A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
基金Supported by the National Natural Science Foundation of China (Grant No. 90410012)
文摘The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.
文摘In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.
文摘This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41941018)the Science and Tech-nology Service Network Initiative of the Chinese Academy of Sci-ences(Grant No.KFJSTS-QYZD-174),and the Guangxi Natural Science Foundation(Grant No.2020GXNSFAA159125).
文摘The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.
基金Authors are thankful to Dr.Chen Xu of Ningbo University for his instructive discussions.The authors are also grateful for the support provided by the National Natural Science Foundation of China(Grant Nos.41972274 and 42207176)Ningbo Natural Science Foundation(Grant No.2022J116)for this research work.
文摘Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect.
基金Project(51101126) supported by the National Natural Science Foundation of ChinaProjects(20110491684,2012T50817) supported by the China Postdoctoral Science FoundationProject(20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy,China
文摘The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.
文摘An additional isotropic internal variable is utilized to extend the Bodner-Partom unified viscoplastic constitutive model (original B-P) to improve the modeling of rate-dependent plasticity and cyclic hardening behaviors of metals. The extended model (new B-P) contains two isotropic internal variables: one plays the role of representing the fast hardening in smaller inelastic strain range, while the other evolutes at slower speed accompanied by larger accumulated inelastic deformation, such as cyclic hardening. To examine the validity of the extended constitutive model, the rate-dependent plasticity of a Ni-base superalloy Udimet 720Li at 650℃ and 700℃ are characterized using both models. Not only numerical simulations are conducted for various loading conditions by implementing both models into ABAOUS using a user material subroutine, also a systematic comparison between two models is completed. Numerical results show that the extended material constants in the new model provide more flexible capability in modeling the inelastic behavior of the material with sound accuracy.
基金supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20050403002)
文摘Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.
文摘This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.
文摘Recently,stress-based dilatancy criteria have become essential tools to design underground facilities in salt formations such as gas storage caverns.However,these criteria can depend critically on the volumetric strain measurements used to deduce the dilatancy onset.Results from conventional triaxial compression tests can show different volumetric behavior depending on the loading conditions,as well as on the measurement techniques.In order to obtain a quantitative understanding of this problem,an experimental program was carried out and the testing procedure was investigated numerically under homogeneous and heterogeneous stress states.The experimental results showed that the deviatoric stress corresponding to the dilatancy onset was significantly dependent on the measurement techniques.With a heterogeneous stress state,the simulation results revealed that the strain measurements at different scales (referred to as local,hybrid or global) can provide different volumetric results with moderate to significant deviations from the idealized behavior,and hence different onsets of dilatancy.They also proved that,under low confinement,tensile stresses can take place within the compressed specimen,leading to a great deviation of the dilatancy onset from the idealized behavior.From both experimental and numerical investigations,the difference in sensitivity to the measurement techniques between the deviatoric and the volumetric behaviors is explained by the relatively small values of the volumetric strain.The non-ideal laboratory conditions have more impact on this strain than on the deviatoric one.These findings can have implications for the interpretation of the dilatancy behavior of rock salt,and hence on the geomechanical design aspects in salt formations.
基金supported by the National Natural Science Foundation of China (No.90510018)
文摘An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.
文摘The average stretching direction,local rotation angular,and stretching ratio parameters of molecular trains were used to express the rheology deformation.Based on this micro geometrical deformation,the macro deformation of medium was expressed.Then,using intrinsic elasticity concept,the stress-strain relation was obtained.In this theoretic formulation,the response functions of extension ratio and rotation angular were used to express the rheology feature of medium.For medium composed by incompressible molecular trains,the local rotation angular divides rheology deformation into three kinds:viscoelastic deformation or elasticity enhancement,viscoplastic deformation or elasticity degenerate and constant elasticity range.These results explain the experimental features of rheology deformation well.
基金The present work was financially supported by the National Science Foundation of China(No.19472042)
文摘The dynamic torsional buckling and post-buckling of elasto-plastic circular cylindrical shell is studied. By the usage of the Bodner-Partom constitutive relation, the present visco-plastic problem is treated as an orthotropic elastic problem. Based on the nonlinear large deflection shell therory, the governing dynamic buckling equation is solved by the Runge-Kutta method, and the critical buckling stress is determined by the B-R criterion. The present paper is mainly focused on the imperfection sensitivity, the strain rate sensitivity, and the dynamic post-buckling characters for the shell loaded dynamically with a constant shear strain rate. Numerical results show that the critical shear stress and imperfection sensitivity will increase with the increase of strain rate. It is found that the elastic buckling stress is more sensitive to imperfection than the visco-plastic buckling. The present research also reveals some dynamic post-buckling characters for the cylindrical shell, and it is shown that the shell will vibrate with the amplitude proportional to the strain rate in elastic buckling but improportional to the strain rate in visco-plastic buckling. An interesting phenomenon is found that when the strain rate is sufficiently high, there is no dynamic visco-plastic buckling occurrence and the shell produces a harmonic oscillation with a very small amplitude.
文摘Rheologic characteristics of soil are very important in soil mechanics. Almost every aspect of research on soil mechanics deals with rheologic characteristics of soil. Although more than half century has passed, study on rheologic characteristics of soil only made a very small progress, which was due to the two facts: (1 ) the complexity of rheologic characteristics of soil; (2) the research methods based on experimental fOrmulas. Based on thermodynamic theory and endo-chronic theory, a new intrinsic constitutive equation for rheologic characteristic of soil was developed, which combined with two groups of internal state variables and their correlative intrinsic time. The new intrinsic constitutive equation did very well in predict essential features of the rheologic behavior of soil, with which the dilatancy of soil during the rheologic process could be described.