A convergence theorem for the method of artificial viscosity applied to the nonstrictly hyperbolic system u(t)+1/2(3u2+v2)x=0, v(t)+(uv)x=0 is established. Convergence of a subsequence in the strong topology is proved...A convergence theorem for the method of artificial viscosity applied to the nonstrictly hyperbolic system u(t)+1/2(3u2+v2)x=0, v(t)+(uv)x=0 is established. Convergence of a subsequence in the strong topology is proved without uniform estimates on the derivatives using the theory of compensated compactness and an analysis of progressing entropy waves.展开更多
In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of th...In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].展开更多
Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K ...Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).展开更多
In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation m...In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].展开更多
In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our me...In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.展开更多
This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using...This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using the DG fnite element discrete calculus framework of[17]that defnes discrete diferential operators to replace continuous differential operators when discretizing a partial diferential equation(PDE).The proposed methods,which are non-monotone,utilize a dual-winding methodology and a new skewsymmetric DG derivative operator that,when combined,eliminate the need for choosing indeterminable penalty constants.The relationship between these new methods and the local DG methods proposed in[38]for Hamilton-Jacobi equations as well as the generalized-monotone fnite diference methods proposed in[13]and corresponding DG methods proposed in[12]for fully nonlinear second order PDEs is also examined.Admissibility and stability are established for the proposed dual-wind DG methods.The stability results are shown to hold independent of the scaling of the stabilizer allowing for choices that go beyond the Godunov barrier for monotone schemes.Numerical experiments are provided to gauge the performance of the new methods.展开更多
The interaction between poly(methymethacrylate) (PMMA) and poly(vinyl chloride) (PVC) has been studied indilute urea solutions of dimethylformamide (DMF) at 28℃ using a dilute solution viscometry method. The results ...The interaction between poly(methymethacrylate) (PMMA) and poly(vinyl chloride) (PVC) has been studied indilute urea solutions of dimethylformamide (DMF) at 28℃ using a dilute solution viscometry method. The results show thatthe polymer mixtures are compatible in DMF solution in the absence of urea. The influence of urea addition on the degree ofcompatibility of the polymer mixtures has been studied in terms of the compatibility parameters (△b_m and △[η]_m). It wasfound that the compatibility of the polymer mixtures is decreased with increasing urea addition, passing through a minimumat 0.5 M urea.展开更多
In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result f...In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result for large initial data has not been obtained.By using the Glimm scheme,Nishida,Smoller and Diperna successively obtained the global existence results for(γ-1)TV(v_(0)(x),u_(0)(x))being small.In the present paper,by adopting a rescaling technique,we improve these results and obtain the global existence result under the condition that(γ-1)^(γ+1)(TV(v_(0)(x)))~(γ-1)(TV(u_(0)(x)))^(2) is small,which implies that,for fixedγ>1,either TV(v_(0)(x))or TV(u_(0)(x))can be arbitrarily large.展开更多
The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-di...The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.展开更多
The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p...The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.展开更多
[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with vi...[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with viscosity method and gel permeation chromatography (GPC) method. [ Method] In viscosity method, cadmium ethylenediamine was used as the solvent, intrinsic viscosity η of the solution was determined at 25 ℃ by using a Ubbelohde viscometer, to calculate the molecular weight of cellulose; in GPC method, 8% LiC1 / N, N-dimethylacetamide (LiC1/DMAc) was used as the solvent and 0.5% LiC1/DMAc was used as the mobile phase to determine the relative molecular weight and distribution of cellulose and cellulose microspheres. In addition, the determination results were analyzed to compare these two methods. [ Result ] Viscosity-average molecular weight Mr/ of cellulose and cellulose microspheres determined with viscosity method were 224,532 and 16,686, respectively; weight-average molecular weight Mw of cellulose and cellulose microspheres determined with GPC method were 284,196 and 22,345, respectively. [ Conclusion] The determination results of (;PC method are relatively close to the actual value and could truly reflect the characteristics of molecular weialat distribution of eellulose and cellulose mierosr, heres.展开更多
In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactn...In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactness estimates of the viscosity solutions because the system has been generalized from 2×2 to n×n and more linearly degenerate characteristic fields emerged, and the emergence of singularity in the region {v1= 0} is another difficulty.We obtain the existence of the global weak solutions using the compensated compactness method coupled with the construction of entropy-entropy flux and BV estimates on viscous solutions.展开更多
This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by emp...This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by employing the Galerkin’s approximation method.Secondly,for a slightly simplified model,we show the existence and uniqueness of global strong solutions via the Banach’s fixed point theorem and vanishing viscosity method.展开更多
In this paper, we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations(1.1) with bounded initial data(1.2). When we fix the third variable s, the sy...In this paper, we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations(1.1) with bounded initial data(1.2). When we fix the third variable s, the system about the variables ρ and u is the classical isentropic gas dynamics in Eulerian coordinates with the pressure function P(ρ, s) = ese-1/ρ,which, in general, does not form a bounded invariant region. We introduce a variant of the viscosity argument, and construct the approximate solutions of(1.1) and(1.2) by adding the artificial viscosity to the Riemann invariants system(2.1). When the amplitude of the first two Riemann invariants(w1(x, 0), w2(x, 0)) of system(1.1) is small,(w1(x, 0), w2(x, 0)) are nondecreasing and the third Riemann invariant s(x, 0) is of the bounded total variation, we obtained the necessary estimates and the pointwise convergence of the viscosity solutions by the compensated compactness theory. This is an extension of the results in [1].展开更多
In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpan...In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. A strong convergence theorem is given, which generalizes all the results obtained by S.Takahashi and W.Takahashi in 2007. In addition, some of the methods applied in this paper improve those of S.Takahashi and W.Takahashi.展开更多
A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broad...A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broadband accuracy and under-resolved instability are examined combined with various orders and mesh resolutions. For shock-dominated flows, the superior accuracy of high order methods in terms of discontinuity resolution are well retained compared with lower ones. For under-resolved simulations, the artificial viscosity model is able to enhance stability of the eighth order discontinuous Galerkin method despite of detrimental influence for accuracy. For multi-scale flows, the artificial viscosity model demonstrates biased numerical dissipation towards higher wavenumbers. Capability in terms of boundary layer flows and hybrid meshes is also demonstrated.It is concluded that the fourth order artificial viscosity discontinuous Galerkin method is comparable to typical high order finite difference methods in the literature in terms of accuracy for identical number of degrees of freedom, while the eighth order is significantly better unless the under-resolved instability issue is raised. Furthermore, the artificial viscosity discontinuous Galerkin method is shown to provide appropriate numerical dissipation as compensation for turbulent kinetic energy decaying on moderately coarse meshes, indicating good potentiality for implicit large eddy simulation.展开更多
In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS mode...In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS model is modified from the RNG k-?turbulence model and is used to investigate the influence of the nonlinear shear stress on the simulation of the high pressure gradient flows and the large curvature flows.Comparisons are made between the result obtained by using the PANS model modified from the RNG k-?model and that obtained by using the nonlinear PANS methods.The flow past a curved rectangular duct is calculated by using the PANS methods.The obtained nonlinear shear stress agrees well with the experimental results,especially in the high pressure gradient region.The calculation results show that the nonlinear PANS methods are more reliable than the linear PANS methods for the high pressure gradient flows,the large curvature flows,and they can be used to capture complex vortexes in a turbomachinary.展开更多
In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm i...In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.展开更多
Let u(t,x)be the solution to the Cauchy problem of a scalar conservation law in one space dimension.It is well known that even for smooth initial data the solution can become discontinuous in finite time and global en...Let u(t,x)be the solution to the Cauchy problem of a scalar conservation law in one space dimension.It is well known that even for smooth initial data the solution can become discontinuous in finite time and global entropy weak solution can best lie in the space of bounded total variations.It is impossible that the solutions belong to,for example,H^(1) because by Sobolev embedding theorem H^(1) functions are Holder continuous.However,the author notes that from any point(t,x),he can draw a generalized characteristic downward which meets the initial axis at y=α(t,x).If he regards u as a function of(t,y),it indeed belongs to H^(1) as a function of y if the initial data belongs to H^(1).He may call this generalized persistence(of high regularity)of the entropy weak solutions.The main purpose of this paper is to prove some kinds of generalized persistence(of high regularity)for the scalar and 2×2 Temple system of hyperbolic conservation laws in one space dimension.展开更多
文摘A convergence theorem for the method of artificial viscosity applied to the nonstrictly hyperbolic system u(t)+1/2(3u2+v2)x=0, v(t)+(uv)x=0 is established. Convergence of a subsequence in the strong topology is proved without uniform estimates on the derivatives using the theory of compensated compactness and an analysis of progressing entropy waves.
基金the Thailand Research Fund for financial support under Grant BRG5280016
文摘In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].
文摘Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).
文摘In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].
基金funded by National University ofCivil Engineering(NUCE)under grant number 15-2020/KHXD-TD。
文摘In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.
基金The work of this author was partially supported by the NSF Grant DMS-1620168.
文摘This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using the DG fnite element discrete calculus framework of[17]that defnes discrete diferential operators to replace continuous differential operators when discretizing a partial diferential equation(PDE).The proposed methods,which are non-monotone,utilize a dual-winding methodology and a new skewsymmetric DG derivative operator that,when combined,eliminate the need for choosing indeterminable penalty constants.The relationship between these new methods and the local DG methods proposed in[38]for Hamilton-Jacobi equations as well as the generalized-monotone fnite diference methods proposed in[13]and corresponding DG methods proposed in[12]for fully nonlinear second order PDEs is also examined.Admissibility and stability are established for the proposed dual-wind DG methods.The stability results are shown to hold independent of the scaling of the stabilizer allowing for choices that go beyond the Godunov barrier for monotone schemes.Numerical experiments are provided to gauge the performance of the new methods.
文摘The interaction between poly(methymethacrylate) (PMMA) and poly(vinyl chloride) (PVC) has been studied indilute urea solutions of dimethylformamide (DMF) at 28℃ using a dilute solution viscometry method. The results show thatthe polymer mixtures are compatible in DMF solution in the absence of urea. The influence of urea addition on the degree ofcompatibility of the polymer mixtures has been studied in terms of the compatibility parameters (△b_m and △[η]_m). It wasfound that the compatibility of the polymer mixtures is decreased with increasing urea addition, passing through a minimumat 0.5 M urea.
基金partially the NSFC(11671193)Fangqi Chen was partially the NSFC(12172166,11872201)。
文摘In this paper,we study the global existence of BV solutions of the initial value problem for the isentropic p-system,where the state equation of the gas is given by P=Av^(-γ).Forγ>1,the general existence result for large initial data has not been obtained.By using the Glimm scheme,Nishida,Smoller and Diperna successively obtained the global existence results for(γ-1)TV(v_(0)(x),u_(0)(x))being small.In the present paper,by adopting a rescaling technique,we improve these results and obtain the global existence result under the condition that(γ-1)^(γ+1)(TV(v_(0)(x)))~(γ-1)(TV(u_(0)(x)))^(2) is small,which implies that,for fixedγ>1,either TV(v_(0)(x))or TV(u_(0)(x))can be arbitrarily large.
基金the financial support from the National Natural Science Foundation of China(Nos.52276045 and 52206062)the Fundamental Research Funds for the Central Universities,China(Nos.3122019171,3122021087 and 3122022QD06).
文摘The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.
基金Yachun Li’s research was supported partly by National Natural Science Foundation of China (10571120,10971135)the Program for New Century Excellent Talents of Chinese Ministry of Education (NCET-07-0546)+3 种基金Shanghai Shuguang Project 06SG11Zhigang Wang’s research was supported partly by Shanghai Jiao Tong University Innovation Fund For Postgraduates (AE071202)the University Young Teacher Sciences Foundation of Anhui Province (2010SQRL145)the Quality Project Found of Fuyang Normal College (2010JPKC07)
文摘The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.
基金Supported by Natural Science Foundation of Guangxi(0991024Z)
文摘[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with viscosity method and gel permeation chromatography (GPC) method. [ Method] In viscosity method, cadmium ethylenediamine was used as the solvent, intrinsic viscosity η of the solution was determined at 25 ℃ by using a Ubbelohde viscometer, to calculate the molecular weight of cellulose; in GPC method, 8% LiC1 / N, N-dimethylacetamide (LiC1/DMAc) was used as the solvent and 0.5% LiC1/DMAc was used as the mobile phase to determine the relative molecular weight and distribution of cellulose and cellulose microspheres. In addition, the determination results were analyzed to compare these two methods. [ Result ] Viscosity-average molecular weight Mr/ of cellulose and cellulose microspheres determined with viscosity method were 224,532 and 16,686, respectively; weight-average molecular weight Mw of cellulose and cellulose microspheres determined with GPC method were 284,196 and 22,345, respectively. [ Conclusion] The determination results of (;PC method are relatively close to the actual value and could truly reflect the characteristics of molecular weialat distribution of eellulose and cellulose mierosr, heres.
基金supported by the National Science Foundation of China(11572148,11671193)the National Research Foundation for the Doctoral Program of Higher Education of China(20133218110025)
文摘In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactness estimates of the viscosity solutions because the system has been generalized from 2×2 to n×n and more linearly degenerate characteristic fields emerged, and the emergence of singularity in the region {v1= 0} is another difficulty.We obtain the existence of the global weak solutions using the compensated compactness method coupled with the construction of entropy-entropy flux and BV estimates on viscous solutions.
基金This article is support in part by NNSF(11871172)Natural Science Foundation of Guangdong Province of China(2019A1515012000).
文摘This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by employing the Galerkin’s approximation method.Secondly,for a slightly simplified model,we show the existence and uniqueness of global strong solutions via the Banach’s fixed point theorem and vanishing viscosity method.
基金supported by the the NSFC(LY20A010023)a professorship called Qianjiang scholar of Zhejiang Province of China.
文摘In this paper, we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations(1.1) with bounded initial data(1.2). When we fix the third variable s, the system about the variables ρ and u is the classical isentropic gas dynamics in Eulerian coordinates with the pressure function P(ρ, s) = ese-1/ρ,which, in general, does not form a bounded invariant region. We introduce a variant of the viscosity argument, and construct the approximate solutions of(1.1) and(1.2) by adding the artificial viscosity to the Riemann invariants system(2.1). When the amplitude of the first two Riemann invariants(w1(x, 0), w2(x, 0)) of system(1.1) is small,(w1(x, 0), w2(x, 0)) are nondecreasing and the third Riemann invariant s(x, 0) is of the bounded total variation, we obtained the necessary estimates and the pointwise convergence of the viscosity solutions by the compensated compactness theory. This is an extension of the results in [1].
基金the Youth Founcation of Sichuan Educational Committee (No.08ZB002)
文摘In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. A strong convergence theorem is given, which generalizes all the results obtained by S.Takahashi and W.Takahashi in 2007. In addition, some of the methods applied in this paper improve those of S.Takahashi and W.Takahashi.
基金supported by the National Natural Science Foundation of China(Grant No.11402016)the Fundamental Research Funds for the Central Universities(Grant Nos.50100002014105020&50100002015105033)
文摘A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broadband accuracy and under-resolved instability are examined combined with various orders and mesh resolutions. For shock-dominated flows, the superior accuracy of high order methods in terms of discontinuity resolution are well retained compared with lower ones. For under-resolved simulations, the artificial viscosity model is able to enhance stability of the eighth order discontinuous Galerkin method despite of detrimental influence for accuracy. For multi-scale flows, the artificial viscosity model demonstrates biased numerical dissipation towards higher wavenumbers. Capability in terms of boundary layer flows and hybrid meshes is also demonstrated.It is concluded that the fourth order artificial viscosity discontinuous Galerkin method is comparable to typical high order finite difference methods in the literature in terms of accuracy for identical number of degrees of freedom, while the eighth order is significantly better unless the under-resolved instability issue is raised. Furthermore, the artificial viscosity discontinuous Galerkin method is shown to provide appropriate numerical dissipation as compensation for turbulent kinetic energy decaying on moderately coarse meshes, indicating good potentiality for implicit large eddy simulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.51406010,51479166)
文摘In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS model is modified from the RNG k-?turbulence model and is used to investigate the influence of the nonlinear shear stress on the simulation of the high pressure gradient flows and the large curvature flows.Comparisons are made between the result obtained by using the PANS model modified from the RNG k-?model and that obtained by using the nonlinear PANS methods.The flow past a curved rectangular duct is calculated by using the PANS methods.The obtained nonlinear shear stress agrees well with the experimental results,especially in the high pressure gradient region.The calculation results show that the nonlinear PANS methods are more reliable than the linear PANS methods for the high pressure gradient flows,the large curvature flows,and they can be used to capture complex vortexes in a turbomachinary.
文摘In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.
基金supported by the National Natural Science Foundation of China(No.12171097)Key Laboratory of Mathematics for Nonlinear Sciences(Fudan University),Ministry of Education of China,Shanghai Key Laboratory for Contemporary Applied Mathematics,School of Mathematical Sciences,Fudan University and Shanghai Science and Technology Program(No.21JC1400600)。
文摘Let u(t,x)be the solution to the Cauchy problem of a scalar conservation law in one space dimension.It is well known that even for smooth initial data the solution can become discontinuous in finite time and global entropy weak solution can best lie in the space of bounded total variations.It is impossible that the solutions belong to,for example,H^(1) because by Sobolev embedding theorem H^(1) functions are Holder continuous.However,the author notes that from any point(t,x),he can draw a generalized characteristic downward which meets the initial axis at y=α(t,x).If he regards u as a function of(t,y),it indeed belongs to H^(1) as a function of y if the initial data belongs to H^(1).He may call this generalized persistence(of high regularity)of the entropy weak solutions.The main purpose of this paper is to prove some kinds of generalized persistence(of high regularity)for the scalar and 2×2 Temple system of hyperbolic conservation laws in one space dimension.