期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Brand Identification of Wine 被引量:2
1
作者 Sixia Liao Jiemei Chen Tao Pan 《American Journal of Analytical Chemistry》 2020年第2期104-113,共10页
High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand id... High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy. 展开更多
关键词 WINE BRAND IDENTIFICATION visible-Near infrared spectroscopy Partial Least SQUARES DISCRIMINANT Analysis Waveband Selection
下载PDF
Visible and Near-Infrared Spectroscopy with Multi-Parameters Optimization of Savitzky-Golay Smoothing Applied to Rapid Analysis of Soil Cr Content of Pearl River Delta 被引量:3
2
作者 Xiaowen Shi Lijun Yao Tao Pan 《Journal of Geoscience and Environment Protection》 2021年第3期75-83,共9页
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri... Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">&middot;</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production. 展开更多
关键词 Soil Heavy Metal CHROMIUM visible and Near-infrared spectroscopy Rapid Reagent-Free Analysis Savitzky-Golay Smoothing
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Identification of Soy Sauce Adulteration 被引量:1
3
作者 Chunli Fu Jiemei Chen +1 位作者 Lifang Fang Tao Pan 《American Journal of Analytical Chemistry》 2022年第2期51-62,共12页
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe... The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions. 展开更多
关键词 visible and Near-infrared spectroscopy Soy Sauce Adulteration Identification Partial Least Squares-Discriminant Analysis Standard Normal Variate
下载PDF
基于野外Vis-NIR光谱的土壤有机质预测与制图 被引量:21
4
作者 郭燕 纪文君 +1 位作者 吴宏海 史舟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第4期1135-1140,共6页
利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱... 利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。 展开更多
关键词 vis-nir光谱 野外型光谱仪 土壤有机质 预测与制图 偏最小二乘回归法(PLSR) 地统计
下载PDF
基于XRF和Vis-NIR光谱数据融合的土壤镉含量定量分析法 被引量:2
5
作者 王清亚 李福生 +3 位作者 江晓宇 邬书良 谢涛锋 黄温钢 《分析测试学报》 CAS CSCD 北大核心 2020年第11期1327-1333,共7页
根据鄱阳湖南矶山区域土壤的X荧光光谱和可见近红外光谱特征,建立了3种数据融合(等权融合、累加融合、外积融合)的最小二乘向量机定量分析模型。结果表明,等权融合和外积融合模型精度和稳定性均优于单一光谱定量分析模型。其中外积融合... 根据鄱阳湖南矶山区域土壤的X荧光光谱和可见近红外光谱特征,建立了3种数据融合(等权融合、累加融合、外积融合)的最小二乘向量机定量分析模型。结果表明,等权融合和外积融合模型精度和稳定性均优于单一光谱定量分析模型。其中外积融合模型性能最佳,其决定系数(R2)为0.85,校正均方根误差(RMSEC)为0.09,预测均方根误差(RMSEP)为0.06,相对分析误差(RPD)为2.41,满足实际土壤中Cd的检测需求。该方法准确可靠,可为我国土壤重金属分类分级方法研究提供参考。 展开更多
关键词 X荧光光谱 可见近红外光谱 最小二乘支持向量机 镉含量 外积融合 土壤
下载PDF
基于光谱技术的典型互花米草入侵湿地土壤属性预测研究
6
作者 陈旭 曹思珩 +3 位作者 杨仁敏 陈秋宇 李建国 徐璐 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期197-203,共7页
为了高效监测互花米草入侵海岸带湿地生态系统的土壤属性变化,选取江苏省盐城湿地珍禽国家级自然保护区的一处典型互花米草入侵湿地作为研究区,利用随机分层采样方法选取15个样点,在3个深度(0~30、30~60、60~100 cm)共采集45个土壤样品... 为了高效监测互花米草入侵海岸带湿地生态系统的土壤属性变化,选取江苏省盐城湿地珍禽国家级自然保护区的一处典型互花米草入侵湿地作为研究区,利用随机分层采样方法选取15个样点,在3个深度(0~30、30~60、60~100 cm)共采集45个土壤样品,测定了土壤可见光-近红外反射光谱和10种土壤理化属性,研究了偏最小二乘和随机森林两种方法的预测能力,分析了不同光谱变换形式对预测精度的影响,探讨了入侵年限和土壤深度作为辅助预测变量的潜力。结果表明:(1)可见光-近红外光谱技术可以较好地预测有机碳、无机碳、全氮、含水量、pH、容重、盐分和黏粒等属性;(2)偏最小二乘回归法比随机森林法更适合监测互花米草入侵湿地的关键土壤理化属性,利用偏最小二乘法对土壤属性建立的预测模型精度(R^(2))在0.341~0.979之间,随机森林方法对土壤属性建立的预测模型精度(R^(2))最高为0.722;(3)基于原始光谱可以获得土壤全氮的最优预测模型(R^(2)为0.769,RMSE为0.091 g·kg^(-1)),而其他土壤属性的最优模型多是基于微分变换或倒数变换建立的模型,微分变换和倒数变换可以有效地提高模型预测精度;(4)模型预测精度在加入入侵年限和土壤深度两个变量后总体上有所提高,其中有机碳、全氮、盐分、pH和容重等属性的预测精度对这两个变量更为敏感,土壤有机碳最优模型的精度(R^(2))从0.794提高到0.806,pH最优模型的精度(R^(2))从0.838提升至0.884,盐分最优模型的精度(R^(2))从0.978提升至0.997。综上所述,可见光-近红外光谱技术在互花米草入侵湿地关键土壤理化属性预测方面具有明显的优越性,通过适当的光谱变换、变量筛选、模型选择等方面可以实现互花米草入侵湿地土壤变化的快速监测。 展开更多
关键词 互花米草入侵 可见光-近红外光谱 土壤监测 偏最小二乘法 随机森林 光谱变换
下载PDF
基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法
7
作者 吴至境 刘富强 +1 位作者 李志刚 陈慧 《食品科学》 EI CAS 北大核心 2025年第2期214-221,共8页
针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立... 针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立一维卷积神经网络回归(one dimensional-convolutional neural networks regression,1D-CNNR)模型以提高模型的预测精度和泛化能力。为了比较,分别建立偏最小二乘回归(partial least squares regression,PLSR)模型和支持向量机回归(support vector regression,SVR)模型。将原始80个样品数据集、1000个样品的DCGAN扩充数据集和1080个样品的合并数据集,分别结合1D-CNNR、SVR及PLSR进行建模与预测。为了进一步验证模型的泛化能力,一批新的总数为40个样品的樱桃番茄数据作为上述3个模型的新测试集。结果显示,使用合并数据集划分所得校正集进行1D-CNNR建模后,模型为最优的SSC回归检测模型。此时1D-CNNR面向合并样品测试集的预测准确率最高,预测相关系数r_(p)=0.9807,均方根误差RMSE_(p)=0.1929;与SVR与PLSR对比,1D-CNNR面向新的40个样品数据集的预测准确率也最高,其r_(p)=0.9638,RMSE_(p)=0.2245。本研究可为有效准确检测樱桃番茄的可溶性固形物含量提供一种新思路。 展开更多
关键词 樱桃番茄 可溶性固形物含量 可见-近红外漫反射光谱 深度卷积生成对抗网络 一维卷积神经网络
下载PDF
Spectroscopic Analysis of Expired and Pure Melmet
8
作者 R. Kayalvizhi M.Sri Vidhya Rubini +1 位作者 A.Christy Ferdinand G. Meenakshi 《Journal of Minerals and Materials Characterization and Engineering》 2012年第4期427-435,共9页
Spectroscopy is a perfect analyzer to find the elements of all matter. The application of spectroscopy has been used to interpret the effect of antibiotics and other medicines after its life duration. This has been st... Spectroscopy is a perfect analyzer to find the elements of all matter. The application of spectroscopy has been used to interpret the effect of antibiotics and other medicines after its life duration. This has been studied by using the diabetics tablet melmet, expired for an year, to visualize the changes physically and chemically [1-3]. It has been observed that the occurrence of changes in color and reduction of smell and also the formation of new peaks and shift by XRD and UV, FTIR characterization respectively [4]. 展开更多
关键词 UV Ultraviolet–visible spectroscopy FTIR - FOURIER Transform infrared spectroscopy XRD X-ray diffraction DSC - Differential Scanning CALORIMETRY
下载PDF
Molecular interactions between anticancer drugs and iodinated contrast media: An in vitro spectroscopic study
9
作者 Ryoichi Ishii Hiromu Mori +5 位作者 Kenji Matsumura Norio Hongo Hiro Kiyosue Shunro Matsumoto Takeshi Yoshimi Seiji Ujiie 《Journal of Biomedical Science and Engineering》 2012年第1期24-33,共10页
Purpose: The purpose of this study is to assess molecular interactions between several anticancer drugs and an iodinated contrast medium by Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spect... Purpose: The purpose of this study is to assess molecular interactions between several anticancer drugs and an iodinated contrast medium by Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV-Vis). Materials and Methods: Iopamidol (IPM) was used as an iodinated contrast medium, and mitomycin C (MTI), epirubicin hydrochloride (EPI), cisplatin (CDDP), 5-fluorouracil (5FU), irinotecan hydrochloride (CPT11), gemcitabine hydrochloride (dFdC), carboplatin (CBDCA), oxaliplatin (1OHP), paclitaxel hydrochloride (TAX) and docetaxel trihydrate (TXT) were used as anticancer drugs. For FT-IR, the purified IPM was mixed stoichiometrically with each anticancer drug as well as with a combination of MTI and EPI. After measuring each separated sample and the mixtures, the spectra of the mixtures were compared with the spectra of the sum of pure samples or the combination. For UV-Vis, IPM and anticancer drugs were dissolved in pure water;subsequently for the titration experiments, the mixtures were prepared by varying the molar ratio. IR absorption corresponds to stretching vibrations between atoms having covalent bonding, whereas UV-Vis spectra depend on molecular dynamics and shapes. Both UV-Vis and IR spectra change when there are molecular interactions such as aromatic ring stacking and hydrogen bonding. Result: IPM exhibited molecular interactions with MTI, EPI, CDDP, dFdC, CBDCA, 1OHP, TAX and TXT, as well as with the combination of MTI and EPI on FT-IR. However, molecular interactions were not observed on UV-Vis. Conclusion: Several anticancer drugs have molecular interactions with IPM, which could be clinically utilized for superselective intraarterial infusion chemotherapy. 展开更多
关键词 BLAST Molecular Interactions ANTICANCER Drugs Iodinated Contrast Medium FOURIER Transform infrared (FT-IR) spectroscopy Ultraviolet-visible (UV-Vis) spectroscopy
下载PDF
基于可见/近红外光谱和函数型线性回归模型的成熟期苹果可溶性固形物含量预测
10
作者 黄华 刘亚 +4 位作者 马毅航 向思函 何佳宁 王诗婷 郭俊先 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1905-1912,共8页
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以3d等间隔周期采摘样本,采集其380~1110nm的可见/近红外光谱,测定其S... 可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以3d等间隔周期采摘样本,采集其380~1110nm的可见/近红外光谱,测定其SSC,共552个样品。然后,利用基函数平滑方法将采集的可见/近红外光谱离散数据转化为光谱曲线,即函数型数据,并以可见/近红外光谱曲线、一阶导曲线、二阶导曲线为函数型解释变量,SSC为标量响应变量,分别建立函数型线性回归模型。为了验证和分析模型的性能,根据原始光谱离散数据,经过移动平滑、一阶导和二阶导预处理后,分别建立偏最小二乘回归(PLSR)、核支持向量机(KSVM)、随机森林(RF)、梯度提升树(GBM)和深度神经网络(DeepNN)。结果表明,在建立的18个模型中,针对训练集,PLSR-dNIR模型、KSVM-dNIR模型、RF-dNIR模型、GBM-dNIR模型和Deep NN-d2NIR模型都优于FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型,且Deep NN-dNIR模型最优(r_(c)=0.9996,R_(c)^(2)=0.9986,RMSEC=0.0740,RPDC=27.4366);针对测试集,FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型均优于其他所有模型,且FunLR-NIR模型最优(r_(v)=0.9534,R_(v)^(2)=0.9077,RMSEV=0.5856,RPDV=3.3017)。综合训练集和测试集的结果来看,核支持向量机模型、随机森林模型、梯度提升树模型和深度神经网络模型容易过拟合,而函数型线性回归模型具有更好的普适性。此外,从三个函数型线性回归模型(FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型)的预测效果看,模型均具有良好的鲁棒性和较高的预测精度。试验结果表明,结合可见/近红外光谱技术与函数型数据分析构建的函数型线性回归模型,可成功、有效地实现成熟期苹果的可溶性固形物含量预测。 展开更多
关键词 苹果 可溶性固形物含量 可见/近红外光谱 函数型数据分析 函数型线性回归模型
下载PDF
基于鞍山式铁矿成像光谱的融合算法研究
11
作者 毛亚纯 文杰 +4 位作者 曹旺 丁瑞波 王世佳 付艳华 徐梦圆 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2620-2625,共6页
铁矿资源是我国经济发展和社会进步的物质基础。在铁矿开采过程中,快速精准地确定铁矿品位,对矿山开采决策及经济效益具有重要影响。高光谱成像技术具有影像覆盖范围广、精度高等优势,已广泛应用于矿石分类及成分反演等领域。然而目前... 铁矿资源是我国经济发展和社会进步的物质基础。在铁矿开采过程中,快速精准地确定铁矿品位,对矿山开采决策及经济效益具有重要影响。高光谱成像技术具有影像覆盖范围广、精度高等优势,已广泛应用于矿石分类及成分反演等领域。然而目前高光谱成像传感器的波段范围主要为可见短近红外(Vis-SWIR)和近红外(NIR)两类,且两类数据多为独立获取,缺乏连续性,采用单一数据所建模型的精度往往偏低。因此融合多传感器所获光谱数据,可有效解决单一传感器波段范围小、包含目标特征波段少等问题,提高基于高光谱成像技术的铁矿品位反演精度。使用Pika L与Pika NIR-320高光谱成像仪,分别在Vis-SWIR与NIR两个波段范围内采集鞍山式铁矿的成像光谱数据,提出了基于互信息(MI)的光谱串联融合方法,该方法首先对两组光谱数据进行预处理,然后对处理后的数据进行互信息计算以此对光谱数据进行串联融合。最后分别以Vis-SWIR、NIR以及基于不同波段串联融合的光谱数据为数据源,建立RBF神经网络品位反演模型,并以融合前后光谱数据所建模型的准确性与精度为融合算法有效性的判别指标。结果表明,光谱数据串联融合后所建模型的准确性与精度高于单独使用Vis-SWIR、NIR光谱数据所建模型的准确性与精度。与基于其余波段串联融合的光谱数据相比,在基于互信息计算得出的959.89nm处串联融合后光谱数据所建模型的准确性与精度最高,R2为0.88,RPD为2.97,RMSE为4.464,MAE为3.32。该研究针对多传感器光谱融合提出了一种新思路,对成像光谱技术应用于铁矿品位反演具有现实指导意义。 展开更多
关键词 鞍山式铁矿 光谱融合 互信息 可见光-近红外光谱 径向基函数
下载PDF
基于多成熟度光谱信息融合的阿森泰克苹果品质预测模型研究 被引量:1
12
作者 吴莎莎 王振杰 +5 位作者 江梦薇 兰维杰 屠康 李晏 袁栋栋 潘磊庆 《食品工业科技》 CAS 北大核心 2024年第7期294-305,共12页
不同成熟度的阿森泰克苹果品质变化大,会显著影响采后贮藏与销售效益。本研究以江苏宿迁四个成熟阶段的阿森泰克苹果为研究对象,首先利用主成分分析(principal component analysis,PCA)和线性判别分析(linear discriminant analysis,LDA... 不同成熟度的阿森泰克苹果品质变化大,会显著影响采后贮藏与销售效益。本研究以江苏宿迁四个成熟阶段的阿森泰克苹果为研究对象,首先利用主成分分析(principal component analysis,PCA)和线性判别分析(linear discriminant analysis,LDA)分析其色泽(L^(*)、a^(*)、b^(*)值)、硬度(firmness,FI)、可溶性固形物(soluble solid content,SSC)、可滴定酸(titratable acidity,TA)、水分含量(moisture content,MC)、干物质(dry matter content,DMC)的变化规律;同时,基于可见-近红外(visible and near-infrared,Vis-NIR)与近红外(nearinfrared,NIR)光谱技术结合连续投影(successiveprojectionsalgorithm,SPA)、竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)、无信息变量消除(uninformative variable elimination,UVE)算法进行相关特征变量筛选,基于偏最小二乘(partial least squares,PLS)与支持向量机(support vector machine,SVM)建立阿森泰克苹果品质预测模型。结果表明,SSC、a^(*)、L^(*)、b^(*)对不同成熟度阿森泰克苹果的聚类贡献率较高,510~680、1170~1270、2300 nm为高相关度特征波段。SPA-PLS、SPA-SVM模型能很好地预测不同成熟度阿森泰克的L^(*)、b^(*)、a^(*)值,相对预测偏差(relative percent deviation,RPD)均高于3.00,CARS-PLS模型可以很好地预测SSC,RPD为3.19,但FI、TA、MC、DMC的SPA-PLS模型预测精度相对较低,RPD分别为2.27、2.21、2.32、2.42。研究结果证明Vis-NIR和NIR光谱方法能够预测不同成熟度阿森泰克苹果品质,为阿森泰克苹果采收管理与质量安全控制提供技术参考。 展开更多
关键词 阿森泰克苹果 可见-近红外光谱 近红外光谱 成熟度 品质
下载PDF
基于可见-近红外光谱的鲜食葡萄成熟品质关键指标检测 被引量:2
13
作者 刘文政 周雪健 +4 位作者 平凤娇 苏媛 鞠延仑 房玉林 杨继红 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期372-383,共12页
酚类物质是评价葡萄成熟品质的重要指标,本文利用可见-近红外光谱技术结合化学计量学定量分析方法对葡萄皮总酚、籽总酚、皮单宁和籽单宁含量开展了无损检测研究。通过手持式可见-近红外光谱仪采集巨玫瑰葡萄波长400~1029 nm范围内的漫... 酚类物质是评价葡萄成熟品质的重要指标,本文利用可见-近红外光谱技术结合化学计量学定量分析方法对葡萄皮总酚、籽总酚、皮单宁和籽单宁含量开展了无损检测研究。通过手持式可见-近红外光谱仪采集巨玫瑰葡萄波长400~1029 nm范围内的漫反射光谱,采用SPXY算法将其划分为校正集和预测集,结合标准正态变换(Standard normal variate,SNV)、多元散射校正(Multiplicative scatter correction,MSC)、一阶导数(First derivative,1 D)、二阶导数(Second derivative,2 D)、Savitzky-Golay卷积平滑(Savitzky-Golay smoothing,SG)和Savitzky-Golay卷积平滑+一阶导数(SG+1D)6种预处理方法以及偏最小二乘回归(Partial least squares regression,PLSR)、支持向量机回归(Support vector machine regression,SVR)和卷积神经网络(Convolutional neural network,CNN)3种建模算法,分别建立了基于全波段和特征波长的葡萄皮总酚、籽总酚、皮单宁和籽单宁定量预测模型并进行综合对比分析。结果表明,对于皮总酚、籽总酚和籽单宁,经特征波长筛选后建立的模型效果优于全波段,而对于皮单宁,全波段建立的模型较特征波长效果更佳;因此,在预测皮总酚、籽总酚、皮单宁和籽单宁含量时,最优模型分别为RAW-CARS-SVR、1D-CARS-SVR、RAW-CNN和RAW-CARS-PLSR,校正集相关系数(Correlation coefficient of calibration set,Rc)分别为0.96、0.99、0.96和0.91,预测集相关系数(Correlation coefficient of prediction set,Rp)分别为0.95、0.99、0.83和0.89,剩余预测偏差(Residual predictive deviation,RPD)分别为3.56、7.30、1.92和2.25。因此,结合可见-近红外光谱和合适的回归模型,可以实现对巨玫瑰葡萄的皮-籽总酚、皮-籽单宁含量的无损检测。 展开更多
关键词 葡萄 可见-近红外光谱 成熟度 品质检测
下载PDF
基于可见-近红外光谱技术的广东典型地区耕地土壤养分含量预测模型评估 被引量:1
14
作者 钟鹤森 李玮 +6 位作者 张泽宇 吴玲 鄂东梅 张孟豪 许腾伟 戴军 张池 《华南农业大学学报》 CSCD 北大核心 2024年第2期218-226,共9页
【目的】可见-近红外光谱(Visible-near infrared spectroscopy,VNIRS)可以利用少量土壤样品建立预测模型,从而无损快速地预测土壤养分含量。然而,至今鲜见广东省土壤养分的VNIRS预测模型的报道。本研究旨在通过传统化学分析方法和VNIR... 【目的】可见-近红外光谱(Visible-near infrared spectroscopy,VNIRS)可以利用少量土壤样品建立预测模型,从而无损快速地预测土壤养分含量。然而,至今鲜见广东省土壤养分的VNIRS预测模型的报道。本研究旨在通过传统化学分析方法和VNIRS技术对广东典型地区的耕地土壤进行分析,构建土壤全量及速效养分含量的VNIRS预测模型,并评估利用光谱分析土壤全量和速效养分含量的可行性,为广东省土壤养分的快速检测及质量评估提供科学参考。【方法】本研究采集了粤东(梅州)、粤西(湛江)、粤北(韶关)、粤西北(肇庆)和珠三角(惠州和珠海) 5个地区共514份耕地土壤样品,测量样品有机质、全氮、可溶性有机碳、碱解氮和速效磷含量,同时利用VNIRS在400~2 490 nm波长范围内探明其全光谱特征,筛选定标样品,结合偏最小二乘法和主成分分析,建立预测模型,并在此基础上进行反向验证,评估模型的可行性。【结果】各地区土壤有机质、全氮、可溶性有机碳、碱解氮和速效磷含量及光谱特征均存在显著差异。有机质和全氮的定标预测模型效果较好,其中,粤西北地区的有机质定标相关系数达到0.831 1,珠三角地区的全氮定标相关系数达到0.789 8;可溶性有机碳、碱解氮和速效磷的预测模型效果在地区间差异较大,粤西北和珠三角地区碱解氮和速效磷的定标效果远优于其他地区。反向验证结果表明,有机质和全氮的预测值与实测值具有较好的相关性,决定系数(R2)最高分别达到0.69和0.65;粤西北和珠三角地区碱解氮的反向验证结果也较好,R2达到0.63和0.62;而可溶性有机碳和速效磷的反向验证结果总体较差。【结论】VNIRS技术能够区分省域内不同地区的土壤来源,可以作为未来土壤分类和土壤质量调查的重要评价指标。VNIRS技术能够较好地直接预测耕地土壤有机质和全氮含量,对可溶性有机碳、碱解氮、速效磷含量的预测存在明显元素差别和地区差异,今后需进一步筛选光谱范围或采用更优方式构建模型。 展开更多
关键词 可见-近红外光谱 广东 耕地土壤 土壤养分 偏最小二乘法
下载PDF
抹茶品质指标的可见近红外光谱检测研究 被引量:1
15
作者 荣艳娜 柳新荣 +2 位作者 邢志强 陈全胜 欧阳琴 《食品安全质量检测学报》 CAS 2024年第3期125-132,共8页
目的建立适用于抹茶品质的可见近红外(visible-nearinfrared,Vis-NIR)光谱快速无损检测模型以实现多种品质指标的定量分析。方法通过Vis-NIR获取抹茶样本的光谱数据,使用一阶导数(first derivative,1^(st))光谱预处理方法,最后采用自助... 目的建立适用于抹茶品质的可见近红外(visible-nearinfrared,Vis-NIR)光谱快速无损检测模型以实现多种品质指标的定量分析。方法通过Vis-NIR获取抹茶样本的光谱数据,使用一阶导数(first derivative,1^(st))光谱预处理方法,最后采用自助软收缩法(bootstrapping soft shrinkage,BOSS)、迭代变量子集优化法(iterative variable subset optimization,IVSO)和竞争性自适应重加权采样法(competitive adaptive reweighted sampling,CARS)筛选光谱特征变量,构建抹茶品质指标的偏最小二乘(partial least square,PLS)预测模型,探究光谱信息与茶多酚、游离氨基酸、酚氨比、咖啡碱和可溶性糖之间的定量关系。结果构建的Vis-NIR的CARS-PLS预测模型在抹茶品质指标含量预测方面均获得了最佳结果,预测相关系数(correlation coefficient in the prediction set,Rp)分别为0.9227、0.8906、0.9243、0.9381和0.9522;预测均方根误差(root mean square error in the prediction set,RMSEP)分别为0.867、0.337、0.557、0.216和0.440。结论本研究采用的Vis-NIR光谱技术综合了可见光、短波近红外和长波近红外的优势,在快速无损预测多种抹茶品质指标方面具有良好应用潜力,为抹茶品质的快速无损高效检测提供理论依据和技术支撑。 展开更多
关键词 可见近红外光谱法 抹茶 化学计量学 变量筛选 无损检测
下载PDF
新型无损检测技术在番茄品质检测中的研究与应用进展 被引量:3
16
作者 韩子馨 张丽丽 +2 位作者 张博 邹方磊 尚楠 《食品科学》 EI CAS CSCD 北大核心 2024年第1期289-300,共12页
番茄是我国种植面积最广的蔬菜之一,受到广大消费者的青睐。近年来,随着人们对健康饮食需求的逐步提升,番茄的品质愈发受到关注。番茄形状较为规则,但不同品种间的大小、果型、颜色差异较大,蕴含的营养成分种类繁多、化学结构复杂,导致... 番茄是我国种植面积最广的蔬菜之一,受到广大消费者的青睐。近年来,随着人们对健康饮食需求的逐步提升,番茄的品质愈发受到关注。番茄形状较为规则,但不同品种间的大小、果型、颜色差异较大,蕴含的营养成分种类繁多、化学结构复杂,导致其品质检测存在一定难度。传统番茄品质检测方法大多存在主观性强、破坏性强、耗时费力的缺点,难以满足大规模品质检测的需求。近年来,随着各类无损检测技术的发展,机器学习、多光谱技术、电子鼻/电子舌等新型检测方法也已逐步应用于番茄品质的快速、无损检测中。本文在传统番茄品质检测技术的基础上,重点总结了基于图像识别的人工智能、电子鼻技术和光谱技术在番茄无损检测方面的发展与应用,为番茄品质检测的研究与发展提供参考。 展开更多
关键词 番茄品质检测 可见-近红外光谱 高光谱成像 拉曼光谱 电子鼻 机器视觉
下载PDF
基于卷积神经网络的古陶瓷窑口甄别
17
作者 孙合杨 周越 +3 位作者 黎思佳 李丽 闫灵通 冯向前 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第2期354-358,共5页
古陶瓷作为中华文化的瑰宝,自古以来不仅在国内受到追捧,在国外同样被视若珍宝。伴随着古代商贸的进行,中国古陶瓷遍布全球各地,辗转流传被私人或博物馆收藏,还有部分古陶瓷经墓葬发掘以及沉船打捞后被收藏于博物馆,这类古陶瓷的产地溯... 古陶瓷作为中华文化的瑰宝,自古以来不仅在国内受到追捧,在国外同样被视若珍宝。伴随着古代商贸的进行,中国古陶瓷遍布全球各地,辗转流传被私人或博物馆收藏,还有部分古陶瓷经墓葬发掘以及沉船打捞后被收藏于博物馆,这类古陶瓷的产地溯源一直以来都是陶瓷考古的重点,对于研究古代商贸和文化交流有重要的意义。通过便携式数码显微镜、分光光度计、X射线荧光等方法对从越窑后司岙、越窑寺龙口、龙泉枫洞岩窑、耀州窑发掘出土的青釉瓷样品进行分析测量,获得了来自四个窑青釉瓷样品的微观气泡尺寸分布特征、紫外可见近红外光谱特征、釉的成分数据。将来自四个窑青釉瓷样品的这三种特征作为变量建立卷积神经网络分类模型进行训练和验证,结果表明青釉瓷的微观气泡尺寸分布特征、紫外可见近红外光谱特征以及瓷釉成分数据均有效,但是不同特征的分类准确率差异非常明显。三十次随机划分训练集与测试集的模型训练平均准确率:微观气泡尺寸分布特征模型为75%,紫外可见近红外光谱特征模型为89.2%,成分数据模型为92.1%,成分数据模型准确率最高且训练集与测试集准确率相差最小。将基于不同特征训练好的模型参数保存进行融合后再训练发现基于紫外可见近红外光谱特征的模型与基于微观气泡尺寸分布特征模型融合后准确率提升至93.7%,而将三种特征的模型融合后准确率提升至最高的97.4%。五折交叉验证的结果表明多种特征融合后的模型可以有效避免出现单一特征模型对越窑后司岙以及越窑寺龙口样品交叉错判数较多的情况。综合来看基于卷积神经网络探索更多的古陶瓷有效分类特征对于实现古陶瓷的精准溯源是可行的。 展开更多
关键词 卷积神经网络 气泡 紫外-可见-近红外光谱 X射线荧光 青釉瓷
下载PDF
一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法
18
作者 魏子朝 卢苗 +6 位作者 雷文晔 王浩宇 魏子渊 高攀 王东 陈煦 胡瑾 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1613-1619,共7页
全球气温上升导致高温天气频发,番茄作为温度敏感型植物更易发生热胁迫,最终导致产量损失。在植物热胁迫检测中,温度通常被用作标定其受胁迫程度的依据,但由于不同植株个体的耐热性和自身健康状态存在差异,同一温度下的植株可能会产生... 全球气温上升导致高温天气频发,番茄作为温度敏感型植物更易发生热胁迫,最终导致产量损失。在植物热胁迫检测中,温度通常被用作标定其受胁迫程度的依据,但由于不同植株个体的耐热性和自身健康状态存在差异,同一温度下的植株可能会产生不同程度热胁迫症状,以温度来标定热胁迫状态可能会导致误判。以番茄幼苗为研究对象,提出了一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热迫胁程度快速分类方法,以提高对番茄热胁迫程度评估的准确性。采集了对照组植株和热胁迫植株的叶绿素荧光参数与可见-近红外光谱数据,以叶绿素荧光参数为热胁迫评价指标,结合k-means++聚类算法评估了番茄幼苗受热胁迫影响的严重程度,通过对标定后样本的叶绿素荧光参数和植物逆境胁迫相关生理量进行分析,验证了标定结果的合理性。以聚类模型输出为依据对光谱数据进行标定,采用3种预处理方法及其组合,结合3种特征波长提取算法对光谱数据进行处理,获得了6个与样本热胁迫程度相关的特征波段。最后以6个特征波段为输入,热胁迫程度为输出,基于4种机器学习算法构建分类模型,实现了对样本热胁迫程度的分类。结果表明:样本叶绿素荧光参数F_(v)/F_(m),F_(v)/F_(o),NPQ,Y(NPQ)和Y(NO)与其胁迫状态存在显著的中高度相关,依据以上参数将所有样本标记为无胁迫,轻度热胁迫和重度热胁迫三类。三类样本的叶绿素荧光参数、丙二醛(MDA)含量以及光合色素含量均表现出了组间显著差异,聚类结果合理。基于聚类结果对光谱数据进行标定,根据标定结果提取光谱特征波长,99%以上的冗余特征被消除,进一步筛选获得了6个用建立分类模型的特征波长。在建立的4个模型中,线性判别分析(LDA)模型具有最优性能,其测试集分类准确率为92.45%,F1分数为0.9291,AUC为0.9780。结果表明,采用叶绿素荧光技术结合可见-近红外光谱技术检测热胁迫是可行的,该研究为热胁迫的快速检测、耐热性快速筛选以及高温灾害预警提供了一种有效方法。 展开更多
关键词 热胁迫 叶绿素荧光 k-means++算法 可见-近红外光谱 分类模型
下载PDF
基于稀疏自注意力和可见-近红外光谱的土壤氮含量预测
19
作者 冀荣华 李常昊 +1 位作者 郑立华 宋丽芬 《农业机械学报》 EI CAS CSCD 北大核心 2024年第10期392-398,409,共8页
氮是影响作物生长的关键因素,精准获取土壤氮含量是实施各类农田水肥管理技术的基础。利用可见-近红外光谱技术可以快速检测土壤氮含量,预测模型精度和泛化能力是制约将光谱技术应用于土壤氮含量检测的瓶颈。为此,提出了一种基于稀疏自... 氮是影响作物生长的关键因素,精准获取土壤氮含量是实施各类农田水肥管理技术的基础。利用可见-近红外光谱技术可以快速检测土壤氮含量,预测模型精度和泛化能力是制约将光谱技术应用于土壤氮含量检测的瓶颈。为此,提出了一种基于稀疏自注意力和可见-近红外光谱的土壤氮含量预测模型(Visible-near-infrared reflection spectrum and sparse transformer,VNIRSformer)用于提升预测精度和泛化能力。模型由输入层、嵌入层、编码器、解码器、预测层和输出层组成。采用大型公开数据集(Land use/cover area frame statistical survey,LUCAS)训练模型以提升模型泛化能力。实验测试VNIRSformer模型在15种不同光谱波长间隔下的性能,发现:随着波长间隔增加,预测精度先升后降,模型规模不断变小。波长间隔为1 nm时模型预测精度最低,RMSE为0.47 g/kg,R^(2)为0.78。波长间隔为5 nm时模型预测精度最高,RMSE为0.35 g/kg,R^(2)为0.89。当波长间隔从0.5 nm增加至1 nm时,模型规模下降最快,下降比例约为72%。当增加至5 nm后,模型规模匀速下降,下降比例约为5%。综合考虑模型规模及性能,最佳波长间隔设为5 nm。与6种不同预测模型(2种卷积神经网络、传统自注意力模型、偏最小二乘回归、支持向量机回归和K近邻回归)进行对比实验,发现:VNIRSformer模型性能最佳,RMSE为0.35 g/kg,R^(2)为0.89,RPD为2.95。测试VNIRSformer对不同等级的土壤氮含量预测能力,发现:VNIRSformer模型能够较好预测小于5 g/kg的土壤氮含量。将VNIRSformer模型直接应用于自采数据集,发现:R^(2)下降约0.17,表明模型具有一定泛化能力。研究表明,选取波长间隔为5 nm的光谱数据作为VNIRSformer模型输入,预测性能最佳,规模适中;稀疏注意力机制有助于提升模型预测精度,降低模型训练时间;预测模型具有一定泛化能力。研究结果可为基于可见-近红外光谱的土壤氮含量预测技术田间实际应用提供理论支持。 展开更多
关键词 土壤氮含量 预测模型 稀疏自注意力机制 可见-近红外光谱
下载PDF
可见-近红外与中红外光谱预测土壤养分的比较研究
20
作者 李学兰 李德成 +6 位作者 郑光辉 曾荣 蔡凯 高维常 潘文杰 姜超英 曾陨涛 《土壤学报》 CAS CSCD 北大核心 2024年第3期687-698,共12页
对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)... 对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)方法进行基线校正,然后分别应用偏最小二乘回归(PLSR)和支持向量机(SVM)两种方法进行建模,探讨了可见-近红外和中红外光谱对土壤全氮(TN)、全磷(TP)、全钾(TK)和碱解氮(AN)、有效磷(AP)、速效钾(AK)共六种土壤养分的预测效果。结果表明:(1)无论基于可见-近红外光谱还是中红外光谱,PLSR模型的预测精度整体均优于SVM模型。(2)中红外光谱对TN、TK和AN的预测精度均显著高于可见-近红外光谱,可见-近红外和中红外光谱均可以可靠地预测TN和TK(性能与四分位间隔距离的比率(RPIQ)大于2.10),中红外光谱可相对较可靠地预测AN(RPIQ=1.87);但两类光谱对TP、AP和AK的预测效果均较差(RPIQ<1.34)。(3)当变量投影重要性得分(VIP)大于1.5时,PLSR模型在中红外光谱区域预测TN和TK的重要波段多于可见-近红外光谱区域,TN的重要波段主要集中于可见-近红外光谱区域的1910和2207 nm附近,中红外光谱区域的1120、1000、960、910、770和668 cm^(–1)附近;TK的重要波段主要集中于可见-近红外光谱区域的540、2176、2225和2268 nm附近,中红外光谱区域的1040、960、910、776、720和668 cm^(–1)附近。因此,中红外光谱技术结合PLSR模型对土壤养分预测效果较好,可快速准确预测土壤TN和TK,可为指导适时施肥提供技术支撑。 展开更多
关键词 可见-近红外光谱 中红外光谱 土壤养分 偏最小二乘回归 支持向量机
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部