In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning e...In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electrochemical testing were used to characterize its composition, crystal morphology, and optical properties. The Bi- OI/BiPO4/FTO composite electrode has higher photoelectrocatalytic (PEC) activity for the degradation of tetracycline than pure BiPO4 and BiOI. The PEC activity of the composite was 1.98 times and 2.46 times higher than those of the BiOI/FTO and BiPO4/FTO electrodes, respectively. The effects of the working voltage and BiOI deposition time on the degradation of tetracycline were investigated. The optimum BiOI deposition time was found to be 150 s and the optimum working voltage is 1.2 V. Trapping experiments showed that hydroxyl radicals (·OH) and superoxide radicals (·O2-) are the major reactive species in the PEC degradation process. The BiOI/BiPO4/FTO composite electrode has good stability, and the tetracycline removal efficiency remains substantially unchanged after four cycles in a static system. The reason for the PEC efficiency enhancement in the BiOI/BiPO4/FTO composite electrode is the increased visible light absorption range and the p-n heterojunction structure, which promotes the separation and migration of the photogenerated electrons and holes.展开更多
Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In p...Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.展开更多
With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such ...With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a hig...A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a higher specific surface area,enhanced light absorption,and better separation and transport performance of charge carriers along the longitudinal direction,all of which synergistically contribute to the superior photocatalytic activity observed.The significantly enhanced catalytic efficiency is also a benefit originating from the fast transfer of photogenerated electrons and holes between g-C3N4 and CdS through a built-in electric field,which was confirmed by investigating the morphology,structure,optical properties,electrochemical properties,and photocatalytic activities.Photocatalytic degradation of rhodamine B(RhB)and photocatalytic hydrogen evolution reaction were also carried out to investigate its photocatalytic performance.RhB can be degraded completely within 60 min,and the optimum H2 evolution rate of tubular g-C3N4/CdS composite is as high as 71.6μmol h^–1,which is about 16.3 times higher than that of pure bulk g-C3N4.The as-prepared nanostructure would be suitable for treating environmental pollutants as well as for water splitting.展开更多
A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structu...A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.展开更多
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th...A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.展开更多
A novel and efficient photocatalyst, CdIn2S4, was simply prepared by a programmed temperature hydrothermal method. The product had a nanometer size (10-15 nm) and strong absorption in the range of 200 to 580 nm, and...A novel and efficient photocatalyst, CdIn2S4, was simply prepared by a programmed temperature hydrothermal method. The product had a nanometer size (10-15 nm) and strong absorption in the range of 200 to 580 nm, and it exhibited visible-light photocatalytic activity to decompose dye methyl orange in aqueous system.展开更多
Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level....Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level. The binary sol was then intercalated into interspaces of polyaniline (PANI) by means of in-situ polymerization of aniline. Conglomeration of the TiO2-V2O5 dusters during the calcination process was avoided because of the wrap of polyaniline. The surface mor- phology, the crystal phases, the structure, and the absorption spectra of (PANI),/TiO2-V2O5 and the composite catalyst were studied using SEM, XRD, FT-IR, and UV-Vis. The photoactivity of the prepared catalyst under UV and visible light irradiation were evaluated by decolorization of methylene blue (MB) solution. The results showed that the composite catalyst displayed a homogeneous anatase phase, and the vanadium pentoxide species was highly dispersed in the TiO2 phase. The composite catalyst responded to visible light because of the narrowed band gap. In this study, the catalyst with the sol volume ratio of TiO2: V2O5 = 10:1 presented the best photocatalytic activity.展开更多
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan...Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.展开更多
With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-co...With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-containing polyimide(MPI)networks and then incorporating Fe(III)cations into the polymer networks.Fe@MPI exhibits a wide absorption spectrum ranging from 220 to 1250 nm and 3.5 times higher photocurrent intensity as compared with the pristine MPI.Based on its excellent photo-electric properties,Fe@MPI was employed as a recyclable heterogeneous catalyst,providing sufficient activity for the visible-light driven radical polymerization to synthesize poly(methyl methacrylate)with molecular weight up to 31.×10^4 g mol.Taking advantage of the heterogeneous nature of the catalyst,Fe@MPI could be facilely regenerated from the polymerization solution by filtration without an obvious loss of its activity.This research provides a novel recyclable catalyst for visible-light driven radical polymerization.展开更多
The performance of an InGaN/GaN multiple quantum well(MQW) based visible-light Schottky photodiode(PD)is improved by optimizing the source flow of TEGa during In Ga N QW growth. The samples with five-pair InGaN/Ga...The performance of an InGaN/GaN multiple quantum well(MQW) based visible-light Schottky photodiode(PD)is improved by optimizing the source flow of TEGa during In Ga N QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the In GaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and -3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing In Ga N may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.展开更多
Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle w...Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst,its morphology and structure were analyzed by means of FTIR,XRD,TGA,SEM,and TEM.The effects of the catalyst dosage,methyl orange(MO) initial concentration and solution pH on photocatalytic performance were also discussed.The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity.Under irradiation of visible light,0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6,then the MO solution(10 mg/L) was decolored by more than 99%,indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity.Therefore,the photodegradation kinetic mechanism of MO in aqueous solution is presumed.展开更多
The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a...The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.展开更多
Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst...Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.展开更多
An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient ai...An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient air as an oxidant at room temperature under metal-free conditions,was developed.展开更多
This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with dif...This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with different emitting sizes, we find that there is a similar linear relationship between LED’s 3dB bandwidth and the operation current density. This experiment also shows that high series resistance is one major issue that limits our LED's modulation speed. To further improve the LED bandwidth, the resistance can be reduced by optimizing device layout as well as reducing material bulk resistance. Clearly, this study provides an approach to increase the modulation bandwidth of GaN-based LEDs for VLC systems.展开更多
We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber...We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.展开更多
基金partly supported by the National Natural Science Foundations of China(21577132)the Fundamental Research Funds for the Central Universities(2652017377,2652017378)~~
文摘In this study, a 2D BiOI nanosheet/1D BiPO4 nanorod/fluorine-doped tin oxide (FTO) composite electrode with a p-n heterojunction structure was prepared by a two-step electrodeposition method. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electrochemical testing were used to characterize its composition, crystal morphology, and optical properties. The Bi- OI/BiPO4/FTO composite electrode has higher photoelectrocatalytic (PEC) activity for the degradation of tetracycline than pure BiPO4 and BiOI. The PEC activity of the composite was 1.98 times and 2.46 times higher than those of the BiOI/FTO and BiPO4/FTO electrodes, respectively. The effects of the working voltage and BiOI deposition time on the degradation of tetracycline were investigated. The optimum BiOI deposition time was found to be 150 s and the optimum working voltage is 1.2 V. Trapping experiments showed that hydroxyl radicals (·OH) and superoxide radicals (·O2-) are the major reactive species in the PEC degradation process. The BiOI/BiPO4/FTO composite electrode has good stability, and the tetracycline removal efficiency remains substantially unchanged after four cycles in a static system. The reason for the PEC efficiency enhancement in the BiOI/BiPO4/FTO composite electrode is the increased visible light absorption range and the p-n heterojunction structure, which promotes the separation and migration of the photogenerated electrons and holes.
文摘Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.
基金supported by the National Natural Science Foundation of China(21421001,21276116,21477050,21301076,21303074)Natural Science Foundation of Jiangsu Province(BK20140530,BK20150482)+5 种基金China Postdoctoral Science Foundation(2015M570409)Chinese-German Cooperation Research Project(GZ1091)Program for High-Level Innovative and Entrepreneurial Talents in Jiangsu ProvinceProgram for New Century Excellent Talents in University(NCET-13-0835)Henry Fok Education Foundation(141068)Six Talents Peak Project in Jiangsu Province(XCL-025)~~
文摘With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金support from the National Natural Science Foundation of China(51602297 and U1510109)Major Research Project of Shandong Province(2016ZDJS11A04)+3 种基金Fundamental Research Funds for the Central Universities(201612007)Postdoctoral Innovation Program of Shandong Province(201603043)Australia Research Council(ARC)under the Project DP160104089Start-up Foundation for Advanced Talents of Qingdao University of Science and Technology(010022919)~~
文摘A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a higher specific surface area,enhanced light absorption,and better separation and transport performance of charge carriers along the longitudinal direction,all of which synergistically contribute to the superior photocatalytic activity observed.The significantly enhanced catalytic efficiency is also a benefit originating from the fast transfer of photogenerated electrons and holes between g-C3N4 and CdS through a built-in electric field,which was confirmed by investigating the morphology,structure,optical properties,electrochemical properties,and photocatalytic activities.Photocatalytic degradation of rhodamine B(RhB)and photocatalytic hydrogen evolution reaction were also carried out to investigate its photocatalytic performance.RhB can be degraded completely within 60 min,and the optimum H2 evolution rate of tubular g-C3N4/CdS composite is as high as 71.6μmol h^–1,which is about 16.3 times higher than that of pure bulk g-C3N4.The as-prepared nanostructure would be suitable for treating environmental pollutants as well as for water splitting.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project(2018ZX07110003)Key Research and Development Project of Shandong Province(2018CXGC1007)~~
文摘A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.
基金supported by the National Natural Science Foundation of China(21871079,21501052)the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B006)~~
文摘A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.
基金This work was financially supported by NNSFC(No.20271007).
文摘A novel and efficient photocatalyst, CdIn2S4, was simply prepared by a programmed temperature hydrothermal method. The product had a nanometer size (10-15 nm) and strong absorption in the range of 200 to 580 nm, and it exhibited visible-light photocatalytic activity to decompose dye methyl orange in aqueous system.
文摘Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level. The binary sol was then intercalated into interspaces of polyaniline (PANI) by means of in-situ polymerization of aniline. Conglomeration of the TiO2-V2O5 dusters during the calcination process was avoided because of the wrap of polyaniline. The surface mor- phology, the crystal phases, the structure, and the absorption spectra of (PANI),/TiO2-V2O5 and the composite catalyst were studied using SEM, XRD, FT-IR, and UV-Vis. The photoactivity of the prepared catalyst under UV and visible light irradiation were evaluated by decolorization of methylene blue (MB) solution. The results showed that the composite catalyst displayed a homogeneous anatase phase, and the vanadium pentoxide species was highly dispersed in the TiO2 phase. The composite catalyst responded to visible light because of the narrowed band gap. In this study, the catalyst with the sol volume ratio of TiO2: V2O5 = 10:1 presented the best photocatalytic activity.
基金the National Natural Science Foundation of China(21975084,51672089)Special Funding on Applied Science and Technology in Guangdong(2017B020238005)+2 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)State Scholarship Fund of China Scholarship Council(200808440114)the Ding Ying Talent Project of South China Agricultural University for their support
文摘Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.
基金supported by the National Scientific Foundation of China(NSFC,Project no.21306119)the Provincial Natural Science Foundation of Sichuan(2013FZ0034 and 2013JY0150)the Outstanding Young Scientist Foundation of Sichuan University(2013SCU04A23)
文摘With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-containing polyimide(MPI)networks and then incorporating Fe(III)cations into the polymer networks.Fe@MPI exhibits a wide absorption spectrum ranging from 220 to 1250 nm and 3.5 times higher photocurrent intensity as compared with the pristine MPI.Based on its excellent photo-electric properties,Fe@MPI was employed as a recyclable heterogeneous catalyst,providing sufficient activity for the visible-light driven radical polymerization to synthesize poly(methyl methacrylate)with molecular weight up to 31.×10^4 g mol.Taking advantage of the heterogeneous nature of the catalyst,Fe@MPI could be facilely regenerated from the polymerization solution by filtration without an obvious loss of its activity.This research provides a novel recyclable catalyst for visible-light driven radical polymerization.
基金supported by the Science and Technology Major Project of Guangdong Province,China(Grant Nos.2014B010119003 and 2015B010112001)
文摘The performance of an InGaN/GaN multiple quantum well(MQW) based visible-light Schottky photodiode(PD)is improved by optimizing the source flow of TEGa during In Ga N QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the In GaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and -3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing In Ga N may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.
基金the National Key Research and Development Project(2019YFC1908204)the Fund of Key Laboratory of Measurement and Control System for Offshore Environment(Fuqing Branch of Fujian Normal University)(No.SI-KF1604)+2 种基金the Key Project of Science and Technology Department of Fujian Province(No.2018H0013)the Key Natural Fund Project of Universities in Fujian Province(No.JZ160490)the Fuqing Branch of Fujian Normal University Cultivation Project(Nos.KY2017NS06,KY201609)。
文摘Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst,its morphology and structure were analyzed by means of FTIR,XRD,TGA,SEM,and TEM.The effects of the catalyst dosage,methyl orange(MO) initial concentration and solution pH on photocatalytic performance were also discussed.The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity.Under irradiation of visible light,0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6,then the MO solution(10 mg/L) was decolored by more than 99%,indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity.Therefore,the photodegradation kinetic mechanism of MO in aqueous solution is presumed.
基金support from the National Key R&D Plan Project(No.2022YFA1505000)Prospective Basic Research Projects of CNPC(Nos.2021DQ03(2022Z-29)+4 种基金2022DJ5406,2022DJ5407,2022DJ5408,2022DJ4507,and TGRI-2021-1)the Natural Science Foundation of Shaanxi Province(No.2022JQ-078)the Natural Science Foundation of China(No.52302308)the Outstanding Youth Science Foundation Project of the National Natural Science Foundation of China(Overseas)(No.GYKP033)the Qinchuangyuan Cited High-Level Innovative and Entrepreneurial Talents Project(No.QCYRCXM-2022-143).
文摘The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.
基金the support of the National Natural Science Foundation of China (51702087 and 21673066)~~
文摘Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.
文摘An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient air as an oxidant at room temperature under metal-free conditions,was developed.
文摘This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with different emitting sizes, we find that there is a similar linear relationship between LED’s 3dB bandwidth and the operation current density. This experiment also shows that high series resistance is one major issue that limits our LED's modulation speed. To further improve the LED bandwidth, the resistance can be reduced by optimizing device layout as well as reducing material bulk resistance. Clearly, this study provides an approach to increase the modulation bandwidth of GaN-based LEDs for VLC systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750115 and 91750108)the Equipment Pre-research Project of Equipment Development Department of Central Military Commission,China(Grant No.61404140112)the Science and Technology Planning Project of Xiamen City,China(Grant No.3502Z20183003).
文摘We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.