A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelte...A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.展开更多
In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared...In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.展开更多
Aim To describe accumulating frames characteristics of CCD camera as a night vision detector. Methods Utilizing CCD external trigger, computer video capture card and image processing software, the image accumul...Aim To describe accumulating frames characteristics of CCD camera as a night vision detector. Methods Utilizing CCD external trigger, computer video capture card and image processing software, the image accumulation was made. Results The detection of the static object image whose illuminance on the CCD FPA(focal plane array) was less than 3 7×10 -5 lx was realized and the image's resolution of 300?TV lines was achieved. Conclusion This experimental system can provide a kind of night vision device capable of detecting the static object at low light level and with low cost compared to an image intensifier.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL...针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL)的深度学习模型,ViTL模型集成了双路Vision-Transformer特征提取、时空特征融合和长短期记忆递归神经网络(LSTM)时序分类等3个关键模块,双路Vision-Transformer特征提取模块用于捕获图像的时空特征相关性,一路提取空间分类特征,一路提取时间变化特征;时空特征融合模块用于将多时特征信息进行交叉融合;LSTM时序分类模块捕捉多时序的依赖关系并进行输出分类。综合利用基于多时序卫星影像的遥感技术理论和方法,对黑龙江省齐齐哈尔市讷河市作物信息进行提取,研究结果表明,ViTL模型表现出色,其总体准确率(Overall Accuracy,OA)、平均交并比(Mean Intersection over Union,MIoU)和F1分数分别达到0.8676、0.6987和0.8175,与其他广泛使用的深度学习方法相比,包括三维卷积神经网络(3-D CNN)、二维卷积神经网络(2-D CNN)和长短期记忆递归神经网络(LSTM),ViTL模型的F1分数提高了9%~12%,显示出显著的优越性。ViTL模型克服了面对多时序遥感影像的农作物分类任务中的时间和空间信息特征采样不足问题,为准确、高效地农作物分类提供了新思路。展开更多
With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply ...With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.展开更多
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f...Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.展开更多
文摘A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.
基金supported in part by the National Natural Science Foundation of China (61533017,U1501251)
文摘In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.
文摘Aim To describe accumulating frames characteristics of CCD camera as a night vision detector. Methods Utilizing CCD external trigger, computer video capture card and image processing software, the image accumulation was made. Results The detection of the static object image whose illuminance on the CCD FPA(focal plane array) was less than 3 7×10 -5 lx was realized and the image's resolution of 300?TV lines was achieved. Conclusion This experimental system can provide a kind of night vision device capable of detecting the static object at low light level and with low cost compared to an image intensifier.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.
文摘针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL)的深度学习模型,ViTL模型集成了双路Vision-Transformer特征提取、时空特征融合和长短期记忆递归神经网络(LSTM)时序分类等3个关键模块,双路Vision-Transformer特征提取模块用于捕获图像的时空特征相关性,一路提取空间分类特征,一路提取时间变化特征;时空特征融合模块用于将多时特征信息进行交叉融合;LSTM时序分类模块捕捉多时序的依赖关系并进行输出分类。综合利用基于多时序卫星影像的遥感技术理论和方法,对黑龙江省齐齐哈尔市讷河市作物信息进行提取,研究结果表明,ViTL模型表现出色,其总体准确率(Overall Accuracy,OA)、平均交并比(Mean Intersection over Union,MIoU)和F1分数分别达到0.8676、0.6987和0.8175,与其他广泛使用的深度学习方法相比,包括三维卷积神经网络(3-D CNN)、二维卷积神经网络(2-D CNN)和长短期记忆递归神经网络(LSTM),ViTL模型的F1分数提高了9%~12%,显示出显著的优越性。ViTL模型克服了面对多时序遥感影像的农作物分类任务中的时间和空间信息特征采样不足问题,为准确、高效地农作物分类提供了新思路。
文摘With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2125014)the Special Fund for Research on National Major Research Instruments of the National Natural Science Foundation of China(Grant No.11927808)the CAS Key Technology Research and Development Team Project(Grant No.GJJSTD20200005)。
文摘Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.