pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, bat...pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, batch experiments were conducted at fixed pH value (pH 5-9) with or without acetate (20 g/L). The hydrolysis efficiencies of carbohydrate and protein were evaluated by carbon and nitrogen content of solids, amylase activity and proteinase activity. The trend of carbohydrate hydrolysis with pH was not affected by the addition of acetate, following the sequence ofpH 7〉pH 8〉pH 9〉pH 6〉pH 5; but the inhibition of acetate (20 g/L) was obvious by 10%-60 %. The evolution of residual nitrogen showed that the effect of pH on protein hydrolysis was minor, while the acetate was seriously inhibitory especially at alkali condition by 45%-100 %. The relationship between the factors (pH and acetate) and the response variables was evaluated by partial least square modeling (PLS). The PLS analysis demonstrated that the hydrolysis of carbohydrate was both affected by pH and acetate, with pH the more important factor. Therefore, the inhibition by acetate on carbohydrate hydrolysis was mainly due to the corresponding decline of pH, but the presence of acetate species, while the acetate species was the absolutely important factor for the hydrolysis of protein.展开更多
文摘pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, batch experiments were conducted at fixed pH value (pH 5-9) with or without acetate (20 g/L). The hydrolysis efficiencies of carbohydrate and protein were evaluated by carbon and nitrogen content of solids, amylase activity and proteinase activity. The trend of carbohydrate hydrolysis with pH was not affected by the addition of acetate, following the sequence ofpH 7〉pH 8〉pH 9〉pH 6〉pH 5; but the inhibition of acetate (20 g/L) was obvious by 10%-60 %. The evolution of residual nitrogen showed that the effect of pH on protein hydrolysis was minor, while the acetate was seriously inhibitory especially at alkali condition by 45%-100 %. The relationship between the factors (pH and acetate) and the response variables was evaluated by partial least square modeling (PLS). The PLS analysis demonstrated that the hydrolysis of carbohydrate was both affected by pH and acetate, with pH the more important factor. Therefore, the inhibition by acetate on carbohydrate hydrolysis was mainly due to the corresponding decline of pH, but the presence of acetate species, while the acetate species was the absolutely important factor for the hydrolysis of protein.