Volatile oil was extracted from Illicium Verum Hook. f. by using steam distillation. 41 kinds of compounds were separated and identified by GC/MS, and their relative contents were determined by normalization method. A...Volatile oil was extracted from Illicium Verum Hook. f. by using steam distillation. 41 kinds of compounds were separated and identified by GC/MS, and their relative contents were determined by normalization method. Among 41 identified compounds, there are 14 hydrocarbon components and 22 oxygenated hydrocarbon derivatives, and a small amount of nitrogenous compounds. The main component is anethole, accoun ting for 76.23%, and the other components such as anisyl acetone, anisaldehyde, p allylanisole, p cumic aldehyde and p allylpen take up more than 10%.展开更多
[Objectives] This study was conducted to analyze the composition of volatile oil in different parts of fennel(Foenicuzu vulgare Mill.) and to compare the differences in the composition of volatile oil in different par...[Objectives] This study was conducted to analyze the composition of volatile oil in different parts of fennel(Foenicuzu vulgare Mill.) and to compare the differences in the composition of volatile oil in different parts of fennel.[Methods]The steam distillation method was applied to extract volatile oil from different parts of fennel,and the components of volatile oil from different parts of fennel were separated and identified by GC-MS.The relative content of each component was determined by the peak area normalization method.[Results]37,33,18,and 44 chemical components were separated from the volatile oil of fennel roots,stems,young leaves and fruit,respectively,accounting for 98.64%,99.34%,99.59% and 95.99% of the total volatile oil of corresponding parts.A total of 77 chemical components were identified in the four parts,of which 5 were common components.The main component of the volatile oil in the stems and young leaves was trans-anethole.The main components of the volatile oil in fruit were estragole and trans-anethole.And the main component of the volatile oil in the roots was dill apiol.The components in the volatile oil of fennel roots,stems,young leaves and fruit were different in type and content.[Conclusions]This study provides a theoretical reference for the further effective development and utilization of fennel resources.展开更多
Active volatile components in drug pair(DP)Herba Ephedrae-Ramulus Cinnamomi(HE-RC),single drug HE and RC were analyzed by gas chromatography/mass spectrometry(GC/MS),chemometric resolution method(CRM)and overall volum...Active volatile components in drug pair(DP)Herba Ephedrae-Ramulus Cinnamomi(HE-RC),single drug HE and RC were analyzed by gas chromatography/mass spectrometry(GC/MS),chemometric resolution method(CRM)and overall volume integration.By means of CRM,the two-dimensional data obtained from GC-MS instruments were resolved into a pure chromatogram and a mass spectrum of each chemical compound.In total,97,62,and 78 volatile chemical components in volatile oil of HE,RC,and DP HE-RC,were respectively determined qualitatively and quantitatively,accounting for 90.08%,91.62%,and 89.76% total contents of volatile oil of HE,RC,and DP HE-RC respectively.It is further demonstrated that the numbers of volatile components of DP HE-RC are almost the sum of those of two single drugs,but some relative contents of them are changed.Some new components,such as 1,6-dimethylhepta-1,3,5-triene,tetracyclo[4.2.1.1(2,5).0(9,10)]deca-3,7-diene,globulol and(E,E)-6,10,14-trimethyl-5,9,13-pentadecatrien-2-one are found in DP HE-RC because of chemical reactions and physical changes during decoction.展开更多
[ Objective] The aim was to study the chemical component of volatile oil of garlic in different districts. [ Method] GC-MS was used to an- alyze the composition of the garlic volatile oil in Guiyang, Guizhou Majiang, ...[ Objective] The aim was to study the chemical component of volatile oil of garlic in different districts. [ Method] GC-MS was used to an- alyze the composition of the garlic volatile oil in Guiyang, Guizhou Majiang, Shandong, Yunnan and Chongqing and the HPLC method was used to assay the content of gadicin. [ Result]Gadicin in different essential oil had the highest content but varied a lot. The sampling amount of garlicin be- tween 0.562 and 2.810 μg was in a good linear relation (R =0.999 2, n = 5 ) with peak area, the average recovery rate was 99.39, RSD = 1.76%. [ Conclusion] GC-MS can be used to analysis the composition of essential oil quickly and effectively. The liquid chromatographic analysis of garlicin was simple, reliable and reproducible. The study provided the theoretical basis for selecting garlic in gadic flavor oil production and improving quality of gadicin oil.展开更多
[Objectives]To analyze the composition of volatile oils from mango leaves from different producing areas.[Methods]The volatile oils in mango leaves from different areas was extracted by steam distillation,and the GC-M...[Objectives]To analyze the composition of volatile oils from mango leaves from different producing areas.[Methods]The volatile oils in mango leaves from different areas was extracted by steam distillation,and the GC-MS method combined with retention index and peak area normalization method was used for qualitative and quantitative analysis.[Results]The volatile oils of mango leaves in southern provinces contained high content of terpenes,such asα-gurjunene(18.39%-34.13%),(+)-viridiflorene(8.95%-16.30%)and(E)-β-ocimene(3.49%-7.63%).The volatile oils components of mango leaves were significantly different in different provinces,for example,mango leaves produced in Hainan Province contained a large amount ofβ-selinene(23.00%),but not in other provinces.[Conclusions]The origin had a great influence on the composition and contents of volatile oils in mango leaves.展开更多
[Objectives] The aim was to determine the optimum process for the extraction of volatile oil from Alpinia zerumbet fruit.[Methods]Steam distillation was used to extract volatile oil from A. zerumbet fruit. Based on th...[Objectives] The aim was to determine the optimum process for the extraction of volatile oil from Alpinia zerumbet fruit.[Methods]Steam distillation was used to extract volatile oil from A. zerumbet fruit. Based on the single factor tests,an orthogonal test was designed to explore the effects of solid-liquid ratio,soaking time,extraction time and grinding degree of material on the extraction rate. The composition of volatile oil from A. zerumbet fruit was analyzed using gas chromatography-mass spectrometry( GC-MS),and the relative mass fraction of each component was determined by peak area normalization. [Results] With volatile oil yield as the index,the optimum extraction process was determined: solid to liquid ratio of 1∶ 10,soaking time of 0. 5 h,grinding degree of passing through 24-mesh sieve and extraction time of 5 h. A total of 29 compounds were isolated. Among them,the contents of α-terpinene( 24. 894%),1,8-terpadiene( 15. 527%) andα-pinene( 6. 982%) were relatively high. [Conclusions]The optimized extraction process for volatile oil from A. zerumbet fruit is stable and reasonable. Under the optimum extraction process,the extraction effect of volatile oil from A. zerumbet fruit was the best. The chemical components of volatile oil from A. zerumbet fruit were determined by GC-MS as α-terpinene( 24. 894%),1,8-terpadiene( 15. 527%) and α-pinene( 6. 982%).展开更多
The chemical constituents of the essential oil of Euonymus fortune from different areas were compared and analyzed by GC-MS.The results showed that 25 chromatographic peaks were separated and 13 chemical constituents ...The chemical constituents of the essential oil of Euonymus fortune from different areas were compared and analyzed by GC-MS.The results showed that 25 chromatographic peaks were separated and 13 chemical constituents were identified in Binyang County,Nanning City,accounting for 97.25%of the total volatile oil.Twenty nine chromatographic peaks were separated from Rong’an County,Liuzhou City,and 14 chemical constituents were identified,accounting for 89.91%of the total volatile oil.Thirty two chromatographic peaks were separated from Mengshan County,Wuzhou City,and 12 chemical constituents were identified,accounting for 92.16%of the total volatile oil.Twenty eight chromatographic peaks were separated from Rong County,Yulin City,and 11 chemical constituents were identified,accounting for 84.79%of the total volatile oil.Five of the chemical constituents of the volatile oil from the three places of origin are common to the four.They are phytol,palmitic acid,n-nonane,cumene,hexahydrofarnesyl acetone.It can be seen that the main components of volatile oil from different producing areas are different.展开更多
[Objectives]This study was conducted to compare and analyze the chemical constituents of the volatile oils of the Yao medicine Thunbergia grandiflora from different habitats.[Methods]A quartz capillary column DB-1MS,a...[Objectives]This study was conducted to compare and analyze the chemical constituents of the volatile oils of the Yao medicine Thunbergia grandiflora from different habitats.[Methods]A quartz capillary column DB-1MS,an EI ion source and a quadrupole mass analyzer were used for analysis.The chromatographic and mass spectrum information obtained was automatically retrieved and analyzed by data processing system and its memory spectrum library(Nist.08).The relative content of each chemical component in the volatile oil was determined by the peak area normalization method.[Results]Forty nine chromatographic peaks were isolated from the sample produced in Shitun,Bailongtan Town,Mashan County,and 24 chemical constituents were identified,accounting for 88.78% of the total volatile oil.Forty nine chromatographic peaks were isolated from the sample produced in Hongdu Village,Chengjiang Town,Duan County,and 30 chemical constituents were identified,accounting for 88.38% of the total volatile oil.Forty eight chromatographic peaks were isolated from the sample produced in Longwan Township,Du'an County,and 25 chemical constituents were identified,accounting for 80.01% of the total volatile oil.Nine chemical constituents were common to the volatile oils of the samples from the three habitats.[Conclusions]It could be seen that the main components of volatile oils from T.grandiflora produced in different areas are different.展开更多
[Objectives]To study the volatile components and antibacterial effects of 11 kinds of Aurantii Fructus Immaturus processed products.[Methods]11 kinds of Aurantii Fructus Immaturus processed products were obtained acco...[Objectives]To study the volatile components and antibacterial effects of 11 kinds of Aurantii Fructus Immaturus processed products.[Methods]11 kinds of Aurantii Fructus Immaturus processed products were obtained according to the traditional processing method,the volatile oil was extracted by steam distillation,and the composition of volatile oil in the 11 kinds of processed products was analyzed by gas chromatography-mass spectrometry(GC-MS).the relative percentage content of each component in these 11 kinds of processed products was determined using the peak area normalization.The drug sensitivity activity of the volatile oil of these 11 kinds of processed products was tested using the K-B paper diffusion method and the minimum inhibition volume fraction of volatile oil of these 11 kinds of processed products was tested using the microdilution method.[Results]The highest yield of volatile oil of 11 kinds of these processed products was baking(5.193%),and the lowest was stir-bake to scorch(1.998%).A total of 36 chemical components were identified from the volatile oils of these 11 kinds of processed products.The components with the most volatile oil were stir-bake to scorch(24 kinds),and the components with the least volatile oil were the method of processing with rice-washed water(15 kinds).They contain 8 kinds of common chemical components,such as limonene,linalool,myrcene,α-pinene.The highest content of limonene came from processing with honey(60.93%),the lowest came from processing with rice-washed water(55.25%);the highest content of linalool came from processing with rice-washed water(7.139%),the lowest came from processing with honey(5.436%);the highest content of myrcene came from processing with honey(1.899%),the lowest came from stir-bake to scorch(1.632%);the highest content ofα-pinene came from raw Aurantii Fructus Immaturus(2.355%),and the lowest came from stir-bake to scorch(1.618%).The volatile oil of these 11 kinds of Aurantii Fructus Immaturus processed products has good antibacterial effect on Escherichia coli and Staphylococcus aureus.[Conclusions]The oil yields of volatile oils of 11 kinds of Aurantii Fructus Immaturus processed products are different,the content of limonene is significantly different,and the changes of other chemical components and their contents are not significantly different.The volatile oil of 11 kinds of Aurantii Fructus Immaturus processed products has certain antibacterial effect.展开更多
Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation ...Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.展开更多
Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,a...Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,antipyretic,analgesic,antiosteoporotic,antihypertensive,sedative,and hypnotic effects.To date,research on the effective components of Chrysanthemum extract has mainly focused on flavonoids,whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components.In this review,the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal,aromatherapy,and diet therapy applications.展开更多
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba...Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.展开更多
Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as pene...Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.展开更多
[Objectives]To establish a gas chromatography-triple quadrupole mass spectrometry(GC-MS/MS)method based on multiple reaction monitoring(MRM)mode for the analysis of the major components in Cang-ai volatile oil(CAVO).[...[Objectives]To establish a gas chromatography-triple quadrupole mass spectrometry(GC-MS/MS)method based on multiple reaction monitoring(MRM)mode for the analysis of the major components in Cang-ai volatile oil(CAVO).[Methods]An ultrasensitive gas chromatography-tandem mass spectrometry(GC-MS/MS)method was developed and validated for the determination of three highly abundant components in rat plasma samples.Paeonol was used as an internal standard.A multiple reaction monitoring(MRM)model was employed for the quantification of the three major components of CAVO.[Results]The method demonstrated linearity over the range of 0.25 to 50μg/mL with a correlation coefficient(R 2)greater than 0.9998.The lower limit of quantification was 0.25μg/mL.Intra-day and inter-day accuracy and precision were within 15%.Extraction recovery and matrix effect values ranged from 90.1%to 110.6%and 0.1%to 2.1%,respectively.[Conclusions]This method was successfully applied to the simultaneous determination of the three components in high-level CAVO plasma samples,providing a basis for subsequent studies of CAVO.展开更多
[Objectives] To explore the efficacy of different concentrations of Centipeda Herba volatile oil in the treatment of allergic rhinitis (AR) by nasal sniffing and the optimal drug concentration.[Methods] Forty-eight mi...[Objectives] To explore the efficacy of different concentrations of Centipeda Herba volatile oil in the treatment of allergic rhinitis (AR) by nasal sniffing and the optimal drug concentration.[Methods] Forty-eight mice were randomly divided into control group, blank group, alcohol treatment group, low concentration group, medium concentration group and high concentration group, with 8 mice in each group. Except for the blank group, each mouse in the other groups was intraperitoneally injected with 1 mL of a mixture of 50 μgOVA+5 mg [Al(OH) 3] +1 mL of normal saline for 14 d. The allergic rhinitis mouse model was successfully established by intranasal instillation of 5% OVA solution on both sides (20 μL per side, once a day) from the 15 th day after stimulation for 7 d. The blank group was treated with the same amount of saline as above. The volatile oil of Centipeda Herba was obtained by steam distillation and petroleum ether extraction, and then was made into 1.25%, 2.5% and 5% volatile oil of Centipeda Herba with 75% alcohol. The control group was stimulated once every other day with reagent 2 after 7 d of stimulation (maintenance) until the end of treatment. The blank group was treated with 5 mL saline by nasal sniffing for 30 d, twice in the morning and evening, 30 min each time. The alcohol treatment group was treated with 5 mL of 75% alcohol, and the low concentration group, the medium concentration group and the high concentration group were treated with 5 mL of 1.25%, 2.5% and 5% Centipeda Herba volatile oil, respectively. The treatment time was the same as that of the blank group, and the treatment process was carried out in their respective closed contamination boxes. Before and after the treatment, the frequency of sneezing, the frequency of scratching nose, the amount of nasal discharge, activity and other general characteristics of the mice were observed, and the allergic behavior score was carried out. Besides, the IgE content in the serum of the mice was determined, and the eosinophils in the nasal discharge were counted.[Results] The scores of mice before and after treatment showed that there was no significant difference in the alcohol treatment group before and after treatment ( P >0.05), and there was significant difference in the low, medium and high concentration groups before and after treatment ( P <0.05), except that there was no significant difference between the control group and the alcohol treatment group ( P >0.05), and there was significant difference among the other groups ( P <0.05). The levels of IgE and the number of eosinophils in peripheral serum of mice in the control group, alcohol treatment group, low concentration group, medium concentration group and high concentration group were higher than those in the blank group ( P <0.05), and there was no significant difference between the two groups ( P >0.05).[Conclusions] Volatile oil of Centipeda Herba can be used to treat allergic rhinitis by nasal sniffing, and 5% volatile oil of Centipeda Herba has the best effect. During the treatment, sneezing and runny nose in mice were reduced. The results showed that nasal sniffing was less irritating to the nasal cavity and not easy to produce discomfort, the utilization rate of drugs was higher than that of traditional therapy, and the volatile oil could be preserved longer than that of traditional Chinese medicine.展开更多
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
Background:Exploring the efficacy,potential components,and mechanism of the combination of ginger essential oil and gingerols in the treatment of head wind disease based on network pharmacology technology with content...Background:Exploring the efficacy,potential components,and mechanism of the combination of ginger essential oil and gingerols in the treatment of head wind disease based on network pharmacology technology with content weight.Methods:The experimental groups were divided into:0:10,1:4,1:2,1:1,2:1,4:1,10:0.The relative content(Ri)of the chemical constituents of ginger's volatile oil was determined using gas chromatography-mass spectrometry(GC-MS).Additionally,the physicochemical and biological property parameters(LogP,MDCK,PPB,MW)of the components were considered.To assess the quantitative effect of the components,a grading score was performed,and the quantitative effect index(Ki)was calculated.Subsequently,the target effect index(Ti)was calculated by combining the component-target matching score(Fit score).Using these calculations,the target effect score A was determined under the influence of multiple components targeting different targets.Key targets with A≥1000 were identified.To predict the targets related to head wind disease,the Comparative Toxicogenomics Database(https://ctdbase.org/),Gene Cards(https://www.genecards.org/),and Disgenet database(https://www.disgenet.org/)were utilized.The key targets,obtained from different proportions of ginger's volatile oil and gingerol,were intersected with the predicted targets.This facilitated network pharmacological analysis and verification of the efficacy.Results:The content of volatile oil in ginger demonstrated an impact on key targets associated with the volatile oil group.Each specific combination of volatile oil consistently activated distinct pathways,with variations stemming from changes in content.Experimental testing revealed that different combinations of ginger's volatile oil and gingerol effectively alleviated migraine symptoms in rats.Conclusion:Through the application of content-weighted network pharmacology technology and pharmacodynamic verification,it was determined that altering the ratio between ginger's volatile oil and gingerol leads to variations in potential targets and pathways,consequently impacting its efficacy.展开更多
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche...In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).展开更多
Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the e...Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography–mass spectrometry(GC–MS) analysis. Results: Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone(PK) type, perilla ketone, myristicin(PM) type, perilla ketone, unknown(PU) type, perilla ketone, beta-caryophyllene, myristicine(PB) type, perilla ketone, myristicin, unknown(PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene(PEMB) type, and the perilla ketone, limonene, betacryophyllene, myristicin(L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. Conclusion:The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time.展开更多
Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are rou...Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are routinely using spices in China and Pakistan,respectively.The flavour profiles of Sanhuang chicken breast(CB)and its blends with CS and GM were obtained by electronic nose(E-nose),solid-phase microextraction gas chromatography-mass spectrometry(SPME GC-MS)and GC-ion mobility spectrometry(GC-IMS).Principal component analysis(PCA)efficiently discriminated the aroma profiles of three chicken formulations.The GC-chromatographs revealed the significant aroma alterations of chicken breast meat after marination with spices.Aldehydes were the major contributors of chicken aroma,while most of the aromatic hydrocarbons were generated by spices.Almost all chicken key-compounds produced by oxidation reaction were either reduced or eliminated by marination,showing the antioxidation capacity of spices leading to meat preservation.GC-IMS is not only a rapid and comprehensive detection method,but also proved to be more sensitive than GC-MS.The substantial role of both traditional spices in enhancing flavour quality of chicken meat,and their exposure as functional ingredients in Chinese and Pakistan cuisines could lead to the cross-cultural meat trade opportunities.展开更多
基金ScienceFoundationofEducationforHunanProvince (No .0 0C32 4 )
文摘Volatile oil was extracted from Illicium Verum Hook. f. by using steam distillation. 41 kinds of compounds were separated and identified by GC/MS, and their relative contents were determined by normalization method. Among 41 identified compounds, there are 14 hydrocarbon components and 22 oxygenated hydrocarbon derivatives, and a small amount of nitrogenous compounds. The main component is anethole, accoun ting for 76.23%, and the other components such as anisyl acetone, anisaldehyde, p allylanisole, p cumic aldehyde and p allylpen take up more than 10%.
基金Supported by Anshun Science and Technology Innovation Platform Construction Project(ASKP[2017]03)。
文摘[Objectives] This study was conducted to analyze the composition of volatile oil in different parts of fennel(Foenicuzu vulgare Mill.) and to compare the differences in the composition of volatile oil in different parts of fennel.[Methods]The steam distillation method was applied to extract volatile oil from different parts of fennel,and the components of volatile oil from different parts of fennel were separated and identified by GC-MS.The relative content of each component was determined by the peak area normalization method.[Results]37,33,18,and 44 chemical components were separated from the volatile oil of fennel roots,stems,young leaves and fruit,respectively,accounting for 98.64%,99.34%,99.59% and 95.99% of the total volatile oil of corresponding parts.A total of 77 chemical components were identified in the four parts,of which 5 were common components.The main component of the volatile oil in the stems and young leaves was trans-anethole.The main components of the volatile oil in fruit were estragole and trans-anethole.And the main component of the volatile oil in the roots was dill apiol.The components in the volatile oil of fennel roots,stems,young leaves and fruit were different in type and content.[Conclusions]This study provides a theoretical reference for the further effective development and utilization of fennel resources.
基金Project (01962502) supported by the Natural Science Foundation of Hunan Province, China
文摘Active volatile components in drug pair(DP)Herba Ephedrae-Ramulus Cinnamomi(HE-RC),single drug HE and RC were analyzed by gas chromatography/mass spectrometry(GC/MS),chemometric resolution method(CRM)and overall volume integration.By means of CRM,the two-dimensional data obtained from GC-MS instruments were resolved into a pure chromatogram and a mass spectrum of each chemical compound.In total,97,62,and 78 volatile chemical components in volatile oil of HE,RC,and DP HE-RC,were respectively determined qualitatively and quantitatively,accounting for 90.08%,91.62%,and 89.76% total contents of volatile oil of HE,RC,and DP HE-RC respectively.It is further demonstrated that the numbers of volatile components of DP HE-RC are almost the sum of those of two single drugs,but some relative contents of them are changed.Some new components,such as 1,6-dimethylhepta-1,3,5-triene,tetracyclo[4.2.1.1(2,5).0(9,10)]deca-3,7-diene,globulol and(E,E)-6,10,14-trimethyl-5,9,13-pentadecatrien-2-one are found in DP HE-RC because of chemical reactions and physical changes during decoction.
基金Supported by Industrial Development Plan of Science and Technology Bureau in Guizhou Province[Guizhou Science GY(20103043)]
文摘[ Objective] The aim was to study the chemical component of volatile oil of garlic in different districts. [ Method] GC-MS was used to an- alyze the composition of the garlic volatile oil in Guiyang, Guizhou Majiang, Shandong, Yunnan and Chongqing and the HPLC method was used to assay the content of gadicin. [ Result]Gadicin in different essential oil had the highest content but varied a lot. The sampling amount of garlicin be- tween 0.562 and 2.810 μg was in a good linear relation (R =0.999 2, n = 5 ) with peak area, the average recovery rate was 99.39, RSD = 1.76%. [ Conclusion] GC-MS can be used to analysis the composition of essential oil quickly and effectively. The liquid chromatographic analysis of garlicin was simple, reliable and reproducible. The study provided the theoretical basis for selecting garlic in gadic flavor oil production and improving quality of gadicin oil.
文摘[Objectives]To analyze the composition of volatile oils from mango leaves from different producing areas.[Methods]The volatile oils in mango leaves from different areas was extracted by steam distillation,and the GC-MS method combined with retention index and peak area normalization method was used for qualitative and quantitative analysis.[Results]The volatile oils of mango leaves in southern provinces contained high content of terpenes,such asα-gurjunene(18.39%-34.13%),(+)-viridiflorene(8.95%-16.30%)and(E)-β-ocimene(3.49%-7.63%).The volatile oils components of mango leaves were significantly different in different provinces,for example,mango leaves produced in Hainan Province contained a large amount ofβ-selinene(23.00%),but not in other provinces.[Conclusions]The origin had a great influence on the composition and contents of volatile oils in mango leaves.
基金Supported by Guizhou Provincial Project for Modernization and Industrialization of Traditional Chinese Medicine(QKHZY[2012]5001-5)
文摘[Objectives] The aim was to determine the optimum process for the extraction of volatile oil from Alpinia zerumbet fruit.[Methods]Steam distillation was used to extract volatile oil from A. zerumbet fruit. Based on the single factor tests,an orthogonal test was designed to explore the effects of solid-liquid ratio,soaking time,extraction time and grinding degree of material on the extraction rate. The composition of volatile oil from A. zerumbet fruit was analyzed using gas chromatography-mass spectrometry( GC-MS),and the relative mass fraction of each component was determined by peak area normalization. [Results] With volatile oil yield as the index,the optimum extraction process was determined: solid to liquid ratio of 1∶ 10,soaking time of 0. 5 h,grinding degree of passing through 24-mesh sieve and extraction time of 5 h. A total of 29 compounds were isolated. Among them,the contents of α-terpinene( 24. 894%),1,8-terpadiene( 15. 527%) andα-pinene( 6. 982%) were relatively high. [Conclusions]The optimized extraction process for volatile oil from A. zerumbet fruit is stable and reasonable. Under the optimum extraction process,the extraction effect of volatile oil from A. zerumbet fruit was the best. The chemical components of volatile oil from A. zerumbet fruit were determined by GC-MS as α-terpinene( 24. 894%),1,8-terpadiene( 15. 527%) and α-pinene( 6. 982%).
基金the Yao Medicine Quality Standard Project of Traditional Chinese Medicine Administration of Guangxi Zhuang Autonomous Region Administration of Traditional Chinese Medicinethe Basic Ability Improvement Project for Young and Middle-aged Teachers in Guangxi Universities(P18037)General Project of Guangxi University of Chinese Medicine(2017MS024)。
文摘The chemical constituents of the essential oil of Euonymus fortune from different areas were compared and analyzed by GC-MS.The results showed that 25 chromatographic peaks were separated and 13 chemical constituents were identified in Binyang County,Nanning City,accounting for 97.25%of the total volatile oil.Twenty nine chromatographic peaks were separated from Rong’an County,Liuzhou City,and 14 chemical constituents were identified,accounting for 89.91%of the total volatile oil.Thirty two chromatographic peaks were separated from Mengshan County,Wuzhou City,and 12 chemical constituents were identified,accounting for 92.16%of the total volatile oil.Twenty eight chromatographic peaks were separated from Rong County,Yulin City,and 11 chemical constituents were identified,accounting for 84.79%of the total volatile oil.Five of the chemical constituents of the volatile oil from the three places of origin are common to the four.They are phytol,palmitic acid,n-nonane,cumene,hexahydrofarnesyl acetone.It can be seen that the main components of volatile oil from different producing areas are different.
基金Supported by Undergraduate Innovation and Entrepreneurship Project of Department of Education of Guangxi Zhuang Autonomous Region(No:201813643063).
文摘[Objectives]This study was conducted to compare and analyze the chemical constituents of the volatile oils of the Yao medicine Thunbergia grandiflora from different habitats.[Methods]A quartz capillary column DB-1MS,an EI ion source and a quadrupole mass analyzer were used for analysis.The chromatographic and mass spectrum information obtained was automatically retrieved and analyzed by data processing system and its memory spectrum library(Nist.08).The relative content of each chemical component in the volatile oil was determined by the peak area normalization method.[Results]Forty nine chromatographic peaks were isolated from the sample produced in Shitun,Bailongtan Town,Mashan County,and 24 chemical constituents were identified,accounting for 88.78% of the total volatile oil.Forty nine chromatographic peaks were isolated from the sample produced in Hongdu Village,Chengjiang Town,Duan County,and 30 chemical constituents were identified,accounting for 88.38% of the total volatile oil.Forty eight chromatographic peaks were isolated from the sample produced in Longwan Township,Du'an County,and 25 chemical constituents were identified,accounting for 80.01% of the total volatile oil.Nine chemical constituents were common to the volatile oils of the samples from the three habitats.[Conclusions]It could be seen that the main components of volatile oils from T.grandiflora produced in different areas are different.
基金the First Phase of Teaching Ability Training Program for Young Backbone Teachers of Guangxi University of Chinese Medicine(04B1805815)Program of Key Laboratory for Extraction and Purification and Quality Analysis of TCM in 2014(Gui Jiao Ke Yan[2014]No.6)。
文摘[Objectives]To study the volatile components and antibacterial effects of 11 kinds of Aurantii Fructus Immaturus processed products.[Methods]11 kinds of Aurantii Fructus Immaturus processed products were obtained according to the traditional processing method,the volatile oil was extracted by steam distillation,and the composition of volatile oil in the 11 kinds of processed products was analyzed by gas chromatography-mass spectrometry(GC-MS).the relative percentage content of each component in these 11 kinds of processed products was determined using the peak area normalization.The drug sensitivity activity of the volatile oil of these 11 kinds of processed products was tested using the K-B paper diffusion method and the minimum inhibition volume fraction of volatile oil of these 11 kinds of processed products was tested using the microdilution method.[Results]The highest yield of volatile oil of 11 kinds of these processed products was baking(5.193%),and the lowest was stir-bake to scorch(1.998%).A total of 36 chemical components were identified from the volatile oils of these 11 kinds of processed products.The components with the most volatile oil were stir-bake to scorch(24 kinds),and the components with the least volatile oil were the method of processing with rice-washed water(15 kinds).They contain 8 kinds of common chemical components,such as limonene,linalool,myrcene,α-pinene.The highest content of limonene came from processing with honey(60.93%),the lowest came from processing with rice-washed water(55.25%);the highest content of linalool came from processing with rice-washed water(7.139%),the lowest came from processing with honey(5.436%);the highest content of myrcene came from processing with honey(1.899%),the lowest came from stir-bake to scorch(1.632%);the highest content ofα-pinene came from raw Aurantii Fructus Immaturus(2.355%),and the lowest came from stir-bake to scorch(1.618%).The volatile oil of these 11 kinds of Aurantii Fructus Immaturus processed products has good antibacterial effect on Escherichia coli and Staphylococcus aureus.[Conclusions]The oil yields of volatile oils of 11 kinds of Aurantii Fructus Immaturus processed products are different,the content of limonene is significantly different,and the changes of other chemical components and their contents are not significantly different.The volatile oil of 11 kinds of Aurantii Fructus Immaturus processed products has certain antibacterial effect.
基金supported by the National Key R&D Program of China (2018YFA0702400)the Science Foundation of China University of Petroleum, Beijing (2462023QNXZ017)。
文摘Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.
基金funded by the National Natural Science Foundation of China(82260695)the Jiangxi Provincial Natural Science Foundation(20232ACB206062,20212ACB206004)+2 种基金Young Jinggang Scholar of Jiangxi Province and New Century Talents Project of Jiangxi Province(2017082,2020028)the Science and Technology Innovation Team of Jiangxi University of Chinese Medicine(CXTD22001,CXTD22006)Project of College Students’Innovation and Entrepreneurship Training Program of Jiangxi University of Chinese Medicine.
文摘Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,antipyretic,analgesic,antiosteoporotic,antihypertensive,sedative,and hypnotic effects.To date,research on the effective components of Chrysanthemum extract has mainly focused on flavonoids,whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components.In this review,the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal,aromatherapy,and diet therapy applications.
基金supported by the National Natural Science Foundation of China(Grant No.52004030)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016003)the Exchange Program of High-end Foreign Experts of Ministry of Science and Technology,China(Grant No.G2022178013L)。
文摘Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.
基金National Science Foundation of China(82174093)Fundamental Research Funds for the Central Universities(BUCM-2019-JYB-JS-016).
文摘Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.
基金the National Natural Science Foundation of China(NSFC)(82060823)Yunnan Science and Technology Talent and Platform Program(202105AG070012).
文摘[Objectives]To establish a gas chromatography-triple quadrupole mass spectrometry(GC-MS/MS)method based on multiple reaction monitoring(MRM)mode for the analysis of the major components in Cang-ai volatile oil(CAVO).[Methods]An ultrasensitive gas chromatography-tandem mass spectrometry(GC-MS/MS)method was developed and validated for the determination of three highly abundant components in rat plasma samples.Paeonol was used as an internal standard.A multiple reaction monitoring(MRM)model was employed for the quantification of the three major components of CAVO.[Results]The method demonstrated linearity over the range of 0.25 to 50μg/mL with a correlation coefficient(R 2)greater than 0.9998.The lower limit of quantification was 0.25μg/mL.Intra-day and inter-day accuracy and precision were within 15%.Extraction recovery and matrix effect values ranged from 90.1%to 110.6%and 0.1%to 2.1%,respectively.[Conclusions]This method was successfully applied to the simultaneous determination of the three components in high-level CAVO plasma samples,providing a basis for subsequent studies of CAVO.
基金Supported by 2021 National Undergraduate Innovation and Entrepreneurship Project(202110599012).
文摘[Objectives] To explore the efficacy of different concentrations of Centipeda Herba volatile oil in the treatment of allergic rhinitis (AR) by nasal sniffing and the optimal drug concentration.[Methods] Forty-eight mice were randomly divided into control group, blank group, alcohol treatment group, low concentration group, medium concentration group and high concentration group, with 8 mice in each group. Except for the blank group, each mouse in the other groups was intraperitoneally injected with 1 mL of a mixture of 50 μgOVA+5 mg [Al(OH) 3] +1 mL of normal saline for 14 d. The allergic rhinitis mouse model was successfully established by intranasal instillation of 5% OVA solution on both sides (20 μL per side, once a day) from the 15 th day after stimulation for 7 d. The blank group was treated with the same amount of saline as above. The volatile oil of Centipeda Herba was obtained by steam distillation and petroleum ether extraction, and then was made into 1.25%, 2.5% and 5% volatile oil of Centipeda Herba with 75% alcohol. The control group was stimulated once every other day with reagent 2 after 7 d of stimulation (maintenance) until the end of treatment. The blank group was treated with 5 mL saline by nasal sniffing for 30 d, twice in the morning and evening, 30 min each time. The alcohol treatment group was treated with 5 mL of 75% alcohol, and the low concentration group, the medium concentration group and the high concentration group were treated with 5 mL of 1.25%, 2.5% and 5% Centipeda Herba volatile oil, respectively. The treatment time was the same as that of the blank group, and the treatment process was carried out in their respective closed contamination boxes. Before and after the treatment, the frequency of sneezing, the frequency of scratching nose, the amount of nasal discharge, activity and other general characteristics of the mice were observed, and the allergic behavior score was carried out. Besides, the IgE content in the serum of the mice was determined, and the eosinophils in the nasal discharge were counted.[Results] The scores of mice before and after treatment showed that there was no significant difference in the alcohol treatment group before and after treatment ( P >0.05), and there was significant difference in the low, medium and high concentration groups before and after treatment ( P <0.05), except that there was no significant difference between the control group and the alcohol treatment group ( P >0.05), and there was significant difference among the other groups ( P <0.05). The levels of IgE and the number of eosinophils in peripheral serum of mice in the control group, alcohol treatment group, low concentration group, medium concentration group and high concentration group were higher than those in the blank group ( P <0.05), and there was no significant difference between the two groups ( P >0.05).[Conclusions] Volatile oil of Centipeda Herba can be used to treat allergic rhinitis by nasal sniffing, and 5% volatile oil of Centipeda Herba has the best effect. During the treatment, sneezing and runny nose in mice were reduced. The results showed that nasal sniffing was less irritating to the nasal cavity and not easy to produce discomfort, the utilization rate of drugs was higher than that of traditional therapy, and the volatile oil could be preserved longer than that of traditional Chinese medicine.
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.
基金Chinese Medicine Pharmaceutical Key Discipline of Shaanxi province(303061107)National key Research and Development plan(2018-YFC1706904)+2 种基金Discipline Innovation team Project of Shaanxi University of Chinese Medicine(2019-YL11)Shaanxi Province Key subject of pharmacy engineering of Shaanxi Provincial Traditional Chinese Medicine administration(2017001)Key R&D Plan of Shaanxi Province,Development of Nasal Formulations of Ginger Medicinal Components Based on"Component Traditional Chinese Medicine"(2020SF-316).
文摘Background:Exploring the efficacy,potential components,and mechanism of the combination of ginger essential oil and gingerols in the treatment of head wind disease based on network pharmacology technology with content weight.Methods:The experimental groups were divided into:0:10,1:4,1:2,1:1,2:1,4:1,10:0.The relative content(Ri)of the chemical constituents of ginger's volatile oil was determined using gas chromatography-mass spectrometry(GC-MS).Additionally,the physicochemical and biological property parameters(LogP,MDCK,PPB,MW)of the components were considered.To assess the quantitative effect of the components,a grading score was performed,and the quantitative effect index(Ki)was calculated.Subsequently,the target effect index(Ti)was calculated by combining the component-target matching score(Fit score).Using these calculations,the target effect score A was determined under the influence of multiple components targeting different targets.Key targets with A≥1000 were identified.To predict the targets related to head wind disease,the Comparative Toxicogenomics Database(https://ctdbase.org/),Gene Cards(https://www.genecards.org/),and Disgenet database(https://www.disgenet.org/)were utilized.The key targets,obtained from different proportions of ginger's volatile oil and gingerol,were intersected with the predicted targets.This facilitated network pharmacological analysis and verification of the efficacy.Results:The content of volatile oil in ginger demonstrated an impact on key targets associated with the volatile oil group.Each specific combination of volatile oil consistently activated distinct pathways,with variations stemming from changes in content.Experimental testing revealed that different combinations of ginger's volatile oil and gingerol effectively alleviated migraine symptoms in rats.Conclusion:Through the application of content-weighted network pharmacology technology and pharmacodynamic verification,it was determined that altering the ratio between ginger's volatile oil and gingerol leads to variations in potential targets and pathways,consequently impacting its efficacy.
基金This work was financially supported by the Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ210322)the National Natural Science Foundation of China(No.32260635).
文摘In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).
基金supported by funding from the Konkuk University Brain Pool
文摘Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography–mass spectrometry(GC–MS) analysis. Results: Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone(PK) type, perilla ketone, myristicin(PM) type, perilla ketone, unknown(PU) type, perilla ketone, beta-caryophyllene, myristicine(PB) type, perilla ketone, myristicin, unknown(PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene(PEMB) type, and the perilla ketone, limonene, betacryophyllene, myristicin(L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. Conclusion:The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time.
基金funded by National Natural Science Foundation of China (Grant No. 32001824, 31972198, 31901816, 31901813, 32001827)
文摘Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are routinely using spices in China and Pakistan,respectively.The flavour profiles of Sanhuang chicken breast(CB)and its blends with CS and GM were obtained by electronic nose(E-nose),solid-phase microextraction gas chromatography-mass spectrometry(SPME GC-MS)and GC-ion mobility spectrometry(GC-IMS).Principal component analysis(PCA)efficiently discriminated the aroma profiles of three chicken formulations.The GC-chromatographs revealed the significant aroma alterations of chicken breast meat after marination with spices.Aldehydes were the major contributors of chicken aroma,while most of the aromatic hydrocarbons were generated by spices.Almost all chicken key-compounds produced by oxidation reaction were either reduced or eliminated by marination,showing the antioxidation capacity of spices leading to meat preservation.GC-IMS is not only a rapid and comprehensive detection method,but also proved to be more sensitive than GC-MS.The substantial role of both traditional spices in enhancing flavour quality of chicken meat,and their exposure as functional ingredients in Chinese and Pakistan cuisines could lead to the cross-cultural meat trade opportunities.