When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap change...When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.展开更多
The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coup...The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coupling(PCC) in the AC multi-MG system(MMS). When an MMS consists of sub-MGs connected in series, power flow between the sub-MGs is not possible if the PCC voltage regulation relies on traditional consensus control objectives. In addition, communication faults and sensor faults are inevitable in the MMS. Therefore, a resilient voltage regulation strategy based on containment control is proposed.First, the feedback linearization technique allows us to deal with the nonlinear distributed generation(DG) dynamics, where the PCC regulation problem of an AC MG is transformed into an output feedback tracking problem for a linear multi-agent system(MAS) containing nonlinear dynamics. This process is an indispensable pre-processing in control algorithm design. Moreover, considering the unavailability of full-state measurements and the potential faults present in the sensors, a novel follower observer is designed to handle communication faults. Based on this, a controller based on containment control is designed to achieve voltage regulation. In regulating multiple PCC voltages to a reasonable upper and lower limit, a voltage difference exists between sub-MGs to achieve power flow. In addition, the secondary control algorithm avoids using global information of directed communication network and fault boundaries for communication link and sensor faults. Finally, the simulation results verify the performance of the proposed strategy.展开更多
In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot ...In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.展开更多
The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting o...The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting on an emulated weak transmission line. Thyristor switched capacitor bank was chosen because it is a well known topology, considering the very nature of the direct starting induction motors, which represents a highly inductive load, the use of switched reactors becomes unnecessary. Such fact minimizes the introduction of harmonics components, and also reduces the cost of the implementation. The binary disposition of the banks allows a variable Var compensation with sixteen steps, in this case. The solution makes use of low cost devices combined with sliding window voltage and current measurement algorithm and a PI control with dead band control for achieve the shown experimental results, where the system is able to manage a typically 20% voltage drop, reducing it to less than 4%. The schematic of the developed circuit, the control technique and a quite simple method to calculate the binary weight capacitors banks are also presented.展开更多
To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the si...To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.展开更多
When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a...When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a highvoltage microgrid is proposed based on the signal detection on the high-voltage side of the coupling transformer. For a high-voltage microgrid, the equivalent impedance of coupling transformer connecting distributed generator with the grid is usually the dominate factor. Compared with the conventional droop control strategy, the proposed control method in this paper detects the feedback signal from the high-voltage side of the coupling transformer. The impact of line impedance on the load sharing accuracy can be mitigated significantly. The proposed droop control only changes the detection point of the feedback signal, thus it is easy to be implemented. The PSCAD/EMTDC simulation results show the effectiveness of the proposed robust droop control concept in load sharing and voltage regulation with highly accuracy.展开更多
The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategie...The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategies,such as grid reinforcement,transformer tap change,demand-side management,active power curtailment,and reactive power optimization methods,show their contribution to voltage support,yet still limited.This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level in a representative LV network in Bornholm Island using a multi-objective genetic algorithm.The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions.Two standard reactive power control concepts,cosu(P)and Q(U),are simulated and compared in terms of network power losses and voltage level along the feeder.As a practical implementation,a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level.The proposed testing platform has been developed within PVNET.dk project,which targets to study the approaches for large PV power integration into the network,without the need of reinforcement.展开更多
With more and more distributed photovoltaic(PV)plants access to the distribution system,whose structure is changing and becoming an active network.The traditional methods of voltage regulation may hardly adapt to this...With more and more distributed photovoltaic(PV)plants access to the distribution system,whose structure is changing and becoming an active network.The traditional methods of voltage regulation may hardly adapt to this new situation.To address this problem,this paper presents a coordinated control method of distributed energy storage systems(DESSs)for voltage regulation in a distribution network.The influence of the voltage caused by the PV plant is analyzed in a simple distribution feeder at first.The voltage regulation areas corresponding to DESSs are divided by calculating and comparing the voltage sensitivity matrix.Then,a coordinated voltage control strategy is proposed for the DESSs.Finally,the simulation results of the IEEE 33-bus radial distribution network verify the effectiveness of the proposed coordinated control method.展开更多
Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification sy...Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification system(RES).In this regard,the medium-voltage direct current RES(MVDC-RES)is a key area of interest nowadays.In this paper,a secondary energy source(SES)consisting of renewable energies(REs)and energy storage systems(ESSs)is proposed to solve the issues of catenary voltage regulation,rail potential,and stray current in the MVDC-RES.Some of the major integration topologies of the SES are analyzed for MVDC-RES and the most effective one is proposed and implemented.The voltage at the point of connection(PoC)of the SES is used as a reference for controlling different operation modes of REs and ESSs.Moreover,feedforward control is used at the ESS converter to attain the quick response from the batteries for the desired operation.The proposed scheme improves the catenary voltage,and reduces the rail potential and stray current.Besides,the scheme provides higher energy density and reduces line losses.Simulation results are provided to validate the operation modes and advantages of the proposed scheme.展开更多
Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a ba...Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a back-to-back converter(ESBC)configuration which extends the operating range and improves the voltage suppression performance to facilitate ultra-high renewable penetration.This paper proposes an efficient control method to facilitate the voltage regulation function of an ESBC with non-critical loads.Particularly,the proposed method is suitable for various load characteristics.We also develop a consensus algorithm to coordinate multiple ESs for maintaining critical bus voltage in distribution systems with ultra-high renewable penetration.The proposed operation of the ESBC is verified by simulation of a modified IEEE 15-bus distribution network.The results show that the ESBC can effectively regulate system voltage and is superior to the original version of the ES.展开更多
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0....A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from volta...The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.展开更多
The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabric...The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.展开更多
A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor...A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor, and improves the output voltage accuracy, which is critical for powering high-performance analog circuitry. The slow-rolloff compensation scheme is realized by introducing three pole-zero pairs, including the proposed polezero pair and sense zero. The post-layout simulation results demonstrate that this LDO has robust system stability, a high open-loop gain, and a high unit-gain frequency,which lead to excellent regulation and transient response performance. The line and load regulation are 27μV/V and 3.78μV/mA, and the overshoots of the output voltage are less than 30mV,while the dropout voltage is 120mV for a 150mA load current.展开更多
For starting high-voltage asynchronous motor,the voltage regulator based on current-limiting transformer is presented in the paper. Its mathematical model needs to be established analyzing and designing voltage regula...For starting high-voltage asynchronous motor,the voltage regulator based on current-limiting transformer is presented in the paper. Its mathematical model needs to be established analyzing and designing voltage regulator of high-voltage asynchronous motor. The mathematical model of the current-limiting transformer is deduced based on basic circuit theory. It can be found that a continuous variation reactance can describe the current-limiting transformer during starting process. The two variables functions of current and voltage are transformed into one-variable functions,and thus system control is greatly simplified. The voltage regulator is simulated on the basis. The simulation results show that this model has enough accuracy. Finally, the high-voltage asynchronous motor voltage regulator based on current-limiting transformer is designed and tested on this model.展开更多
Control strategy affects directly the working performances of dynamic voltage regulator (DVR). One-cycle control is an effective nonlinear signal modulation control method. In this paper, a new one-cycle control sch...Control strategy affects directly the working performances of dynamic voltage regulator (DVR). One-cycle control is an effective nonlinear signal modulation control method. In this paper, a new one-cycle control scheme for DVR was proposed in single phase supply system. On the basis of principle analysis, the corresponding one-cycle control model for DVR was built up, which is characterized by simple control circuits, good control performance, and high control precision. As an example, a control model for single-phase DVR was simulated by using Matlab/Simulink and SimPowerSystem. The results show that the load voltage could be compensated quickly at the points of supply voltage stepping down and up, and the relative error was less than 4% in the whole voltage sag process. Both theory analysis and simulation results show that the new one-cycle control scheme for DVR is effective.展开更多
This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation...This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.展开更多
In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in ord...In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in order to avoid directly solving a large-scale nonlinear optimization problem.We select photovoltaic inverters as agents to adjust system voltage in a distribution network,taking the reactive power output of inverters as action variables.An appropriate reward function is designed to guide the interaction between photovoltaic inverters and the distribution network environment.OPENDSS is used to output system node voltage and network loss.This method realizes the goal of optimal VVC in distribution network.The IEEE 13-bus three phase unbalanced distribution system is used to verify the effectiveness of the proposed algorithm.Simulation results demonstrate that the proposed method has excellent performance in voltage and reactive power regulation of a distribution network.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
基金Supported by the Postdoctoral Science Foundation of China(No.2022M710039)。
文摘When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.
基金supported in part by the National Key R&D Program of China(2018YFA0702200)the National Natural Science Foundation of China(62073065,U20A20190)。
文摘The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coupling(PCC) in the AC multi-MG system(MMS). When an MMS consists of sub-MGs connected in series, power flow between the sub-MGs is not possible if the PCC voltage regulation relies on traditional consensus control objectives. In addition, communication faults and sensor faults are inevitable in the MMS. Therefore, a resilient voltage regulation strategy based on containment control is proposed.First, the feedback linearization technique allows us to deal with the nonlinear distributed generation(DG) dynamics, where the PCC regulation problem of an AC MG is transformed into an output feedback tracking problem for a linear multi-agent system(MAS) containing nonlinear dynamics. This process is an indispensable pre-processing in control algorithm design. Moreover, considering the unavailability of full-state measurements and the potential faults present in the sensors, a novel follower observer is designed to handle communication faults. Based on this, a controller based on containment control is designed to achieve voltage regulation. In regulating multiple PCC voltages to a reasonable upper and lower limit, a voltage difference exists between sub-MGs to achieve power flow. In addition, the secondary control algorithm avoids using global information of directed communication network and fault boundaries for communication link and sensor faults. Finally, the simulation results verify the performance of the proposed strategy.
文摘In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.
文摘The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting on an emulated weak transmission line. Thyristor switched capacitor bank was chosen because it is a well known topology, considering the very nature of the direct starting induction motors, which represents a highly inductive load, the use of switched reactors becomes unnecessary. Such fact minimizes the introduction of harmonics components, and also reduces the cost of the implementation. The binary disposition of the banks allows a variable Var compensation with sixteen steps, in this case. The solution makes use of low cost devices combined with sliding window voltage and current measurement algorithm and a PI control with dead band control for achieve the shown experimental results, where the system is able to manage a typically 20% voltage drop, reducing it to less than 4%. The schematic of the developed circuit, the control technique and a quite simple method to calculate the binary weight capacitors banks are also presented.
基金supported in part by the National Natural Science Foundation of China under Grant 52377119 and U22B20109.
文摘To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.
基金supported by the National Natural Science Foundation of China(No.51207048)the National High Technology Research and Development of China(No.2014AA052601)Higher National Excellent Doctoral Dissertation of Special Funds(No.201441)
文摘When the line impedance is considered in the microgrid, the accuracy of load sharing will decrease. In this paper, the impact of line impedance on the accuracy of load sharing is analyzed. A robust droop control for a highvoltage microgrid is proposed based on the signal detection on the high-voltage side of the coupling transformer. For a high-voltage microgrid, the equivalent impedance of coupling transformer connecting distributed generator with the grid is usually the dominate factor. Compared with the conventional droop control strategy, the proposed control method in this paper detects the feedback signal from the high-voltage side of the coupling transformer. The impact of line impedance on the load sharing accuracy can be mitigated significantly. The proposed droop control only changes the detection point of the feedback signal, thus it is easy to be implemented. The PSCAD/EMTDC simulation results show the effectiveness of the proposed robust droop control concept in load sharing and voltage regulation with highly accuracy.
基金This work was supported in part by PVNET.dk project sponsored by Energinet.dk under the Electrical Energy Research Program(ForskEL,grant number 10698).
文摘The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategies,such as grid reinforcement,transformer tap change,demand-side management,active power curtailment,and reactive power optimization methods,show their contribution to voltage support,yet still limited.This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level in a representative LV network in Bornholm Island using a multi-objective genetic algorithm.The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions.Two standard reactive power control concepts,cosu(P)and Q(U),are simulated and compared in terms of network power losses and voltage level along the feeder.As a practical implementation,a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level.The proposed testing platform has been developed within PVNET.dk project,which targets to study the approaches for large PV power integration into the network,without the need of reinforcement.
基金This paper is supported by The National Key Research and Development Plan,Energy Storage Technology of 10MW Level Redox Battery,2017YFB0903504。
文摘With more and more distributed photovoltaic(PV)plants access to the distribution system,whose structure is changing and becoming an active network.The traditional methods of voltage regulation may hardly adapt to this new situation.To address this problem,this paper presents a coordinated control method of distributed energy storage systems(DESSs)for voltage regulation in a distribution network.The influence of the voltage caused by the PV plant is analyzed in a simple distribution feeder at first.The voltage regulation areas corresponding to DESSs are divided by calculating and comparing the voltage sensitivity matrix.Then,a coordinated voltage control strategy is proposed for the DESSs.Finally,the simulation results of the IEEE 33-bus radial distribution network verify the effectiveness of the proposed coordinated control method.
文摘Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification system(RES).In this regard,the medium-voltage direct current RES(MVDC-RES)is a key area of interest nowadays.In this paper,a secondary energy source(SES)consisting of renewable energies(REs)and energy storage systems(ESSs)is proposed to solve the issues of catenary voltage regulation,rail potential,and stray current in the MVDC-RES.Some of the major integration topologies of the SES are analyzed for MVDC-RES and the most effective one is proposed and implemented.The voltage at the point of connection(PoC)of the SES is used as a reference for controlling different operation modes of REs and ESSs.Moreover,feedforward control is used at the ESS converter to attain the quick response from the batteries for the desired operation.The proposed scheme improves the catenary voltage,and reduces the rail potential and stray current.Besides,the scheme provides higher energy density and reduces line losses.Simulation results are provided to validate the operation modes and advantages of the proposed scheme.
基金fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region under Theme-based Research Scheme through Project No.T23-701/14-N
文摘Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a back-to-back converter(ESBC)configuration which extends the operating range and improves the voltage suppression performance to facilitate ultra-high renewable penetration.This paper proposes an efficient control method to facilitate the voltage regulation function of an ESBC with non-critical loads.Particularly,the proposed method is suitable for various load characteristics.We also develop a consensus algorithm to coordinate multiple ESs for maintaining critical bus voltage in distribution systems with ultra-high renewable penetration.The proposed operation of the ESBC is verified by simulation of a modified IEEE 15-bus distribution network.The results show that the ESBC can effectively regulate system voltage and is superior to the original version of the ES.
文摘A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
文摘The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.
基金Project supported by the National Natural Science Foundation of China(Grant No.31872901)the National Key Research and Development Program of China(Grant No.2016YFA0501602).
文摘The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.
文摘A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor, and improves the output voltage accuracy, which is critical for powering high-performance analog circuitry. The slow-rolloff compensation scheme is realized by introducing three pole-zero pairs, including the proposed polezero pair and sense zero. The post-layout simulation results demonstrate that this LDO has robust system stability, a high open-loop gain, and a high unit-gain frequency,which lead to excellent regulation and transient response performance. The line and load regulation are 27μV/V and 3.78μV/mA, and the overshoots of the output voltage are less than 30mV,while the dropout voltage is 120mV for a 150mA load current.
基金Natural Science Foundation of Shanghai,China(No.14ZR1419100)Shanghai Science and Technology Commission,China(No.13160501500)+1 种基金Shanghai Maritime University Foundation,China(No.20130430)the Ministry of Transport Foundation of China(No.2013329 810350)
文摘For starting high-voltage asynchronous motor,the voltage regulator based on current-limiting transformer is presented in the paper. Its mathematical model needs to be established analyzing and designing voltage regulator of high-voltage asynchronous motor. The mathematical model of the current-limiting transformer is deduced based on basic circuit theory. It can be found that a continuous variation reactance can describe the current-limiting transformer during starting process. The two variables functions of current and voltage are transformed into one-variable functions,and thus system control is greatly simplified. The voltage regulator is simulated on the basis. The simulation results show that this model has enough accuracy. Finally, the high-voltage asynchronous motor voltage regulator based on current-limiting transformer is designed and tested on this model.
基金The National Science and Technology Sup-port Project (No.2007BAA12B03)
文摘Control strategy affects directly the working performances of dynamic voltage regulator (DVR). One-cycle control is an effective nonlinear signal modulation control method. In this paper, a new one-cycle control scheme for DVR was proposed in single phase supply system. On the basis of principle analysis, the corresponding one-cycle control model for DVR was built up, which is characterized by simple control circuits, good control performance, and high control precision. As an example, a control model for single-phase DVR was simulated by using Matlab/Simulink and SimPowerSystem. The results show that the load voltage could be compensated quickly at the points of supply voltage stepping down and up, and the relative error was less than 4% in the whole voltage sag process. Both theory analysis and simulation results show that the new one-cycle control scheme for DVR is effective.
基金supported by the U.S.Office of Naval Research(N00014-21-1-2175)。
文摘This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.
基金supported by the Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.under Grant B311JY21000A。
文摘In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in order to avoid directly solving a large-scale nonlinear optimization problem.We select photovoltaic inverters as agents to adjust system voltage in a distribution network,taking the reactive power output of inverters as action variables.An appropriate reward function is designed to guide the interaction between photovoltaic inverters and the distribution network environment.OPENDSS is used to output system node voltage and network loss.This method realizes the goal of optimal VVC in distribution network.The IEEE 13-bus three phase unbalanced distribution system is used to verify the effectiveness of the proposed algorithm.Simulation results demonstrate that the proposed method has excellent performance in voltage and reactive power regulation of a distribution network.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.