In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new...In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.展开更多
In view of the difficulties in stand volume estimation in natural forests, we derived real form factors and models for volume estimation in these types of forest ecosystems, using Katarniaghat Wildlife Sanctuary as a ...In view of the difficulties in stand volume estimation in natural forests, we derived real form factors and models for volume estimation in these types of forest ecosystems, using Katarniaghat Wildlife Sanctuary as a case study. Tree growth data were obtained for all trees (dbh 〉10 cm) in 4 plots (25 × 25 m) randomly located in each of three strata selected in the forest. The form factor calculated for the stand was 0.42 and a range of 0.42 0.57 was estimated for selected species (density 〉10). The parameters of model variables were consistent with general growth trends of trees and each was statistically significant. There was no significant difference (p〉0.05) between the observed and predicted volumes for all models and there was very high correlation between observed and predicted volumes. The output of the performance statistics and the logical signs of the regression coefficients of the models demonstrated that they are useful for volume estimation with minimal error. Plotting the biases with respect to considerable regressor variables showed no meaningful and evident trend of bias values along with the independent variables. This showed that the models did not violate regression assumptions and there were no heteroscedacity or multiculnarity problems. We recommend use of the form factors and models in this ecosystem and in similar ones for stand and tree volume estimation.展开更多
This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and r...This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.展开更多
Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for ...Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.展开更多
In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate ...In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.展开更多
Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and he...Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.展开更多
In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining...In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.展开更多
This study was conducted to evaluate the performance of six stem taper models on four tropical tree species, namely Celtis luzonica(Magabuyo),Diplodiscus paniculatus(Balobo), Parashorea malaanonan(Bagtikan), and Swiet...This study was conducted to evaluate the performance of six stem taper models on four tropical tree species, namely Celtis luzonica(Magabuyo),Diplodiscus paniculatus(Balobo), Parashorea malaanonan(Bagtikan), and Swietenia macrophylla(Mahogany) in Mount Makiling Forest Reserve(MMFR), Philippines using fit statistics and lack-of-fit statistics. Four statistical criteria were used in this study, including the standard error of estimate(SEE),coefficient of determination(R^2), mean bias( E),and absolute mean difference(AMD). For the lack-offit statistics, SEE, E and AMD were determined in different relative height classes. The results indicated that the Kozak02 stem taper model offered the best fit for the four tropical species in most statistics. The Kozak02 model also consistently provided the best performance in the lack-of-fit statistics with the best SEE, E and AMD in most of the relative height classes. These stem taper equations could help forest managers and researchers better estimate the diameter of the outside bark with any given height,merchantable stem volumes and total stem volumes of standing trees belonging to the four species of thetropical forest in MMFR.展开更多
Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effect...Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost- effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R^2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.展开更多
基金the National Natural Science Foundation of China under Grant No.52274159 received by E.Hu,https://www.nsfc.gov.cn/Grant No.52374165 received by E.Hu,https://www.nsfc.gov.cn/the China National Coal Group Key Technology Project Grant No.(20221CY001)received by Z.Guan,and E.Hu,https://www.chinacoal.com/.
文摘In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.
文摘In view of the difficulties in stand volume estimation in natural forests, we derived real form factors and models for volume estimation in these types of forest ecosystems, using Katarniaghat Wildlife Sanctuary as a case study. Tree growth data were obtained for all trees (dbh 〉10 cm) in 4 plots (25 × 25 m) randomly located in each of three strata selected in the forest. The form factor calculated for the stand was 0.42 and a range of 0.42 0.57 was estimated for selected species (density 〉10). The parameters of model variables were consistent with general growth trends of trees and each was statistically significant. There was no significant difference (p〉0.05) between the observed and predicted volumes for all models and there was very high correlation between observed and predicted volumes. The output of the performance statistics and the logical signs of the regression coefficients of the models demonstrated that they are useful for volume estimation with minimal error. Plotting the biases with respect to considerable regressor variables showed no meaningful and evident trend of bias values along with the independent variables. This showed that the models did not violate regression assumptions and there were no heteroscedacity or multiculnarity problems. We recommend use of the form factors and models in this ecosystem and in similar ones for stand and tree volume estimation.
基金supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant No. 2012M3A2A1050979)
文摘This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901 and 2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495 and 51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2021A1515012286)Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(Grant No.2022L3049).
文摘Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.
基金Supported by Ningbo Natural Science Foundation (No. 2006A610016)Foundation of Ministry of Education for Returned Overseas Students & Scholars (SRF for ROCS, SEM. No. 2006699)
文摘In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.
基金the Natural Sciences and Engineering Research Council of Canada(Discovery Grant RGPIN-2023-05879)the New Brunswick Innovation Foundation(Emerging Projects Grant EP-0000000033)。
文摘Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.
基金the Korea Forest Service for funding this research(Project No.S211316L020130)
文摘In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.
基金support from Kongju National University Research Grant (2014)
文摘This study was conducted to evaluate the performance of six stem taper models on four tropical tree species, namely Celtis luzonica(Magabuyo),Diplodiscus paniculatus(Balobo), Parashorea malaanonan(Bagtikan), and Swietenia macrophylla(Mahogany) in Mount Makiling Forest Reserve(MMFR), Philippines using fit statistics and lack-of-fit statistics. Four statistical criteria were used in this study, including the standard error of estimate(SEE),coefficient of determination(R^2), mean bias( E),and absolute mean difference(AMD). For the lack-offit statistics, SEE, E and AMD were determined in different relative height classes. The results indicated that the Kozak02 stem taper model offered the best fit for the four tropical species in most statistics. The Kozak02 model also consistently provided the best performance in the lack-of-fit statistics with the best SEE, E and AMD in most of the relative height classes. These stem taper equations could help forest managers and researchers better estimate the diameter of the outside bark with any given height,merchantable stem volumes and total stem volumes of standing trees belonging to the four species of thetropical forest in MMFR.
基金Wyoming Department of Transportation for the funding support throughout the study
文摘Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost- effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R^2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.