期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology 被引量:5
1
作者 Chao Hu Yi-hong Zhou +1 位作者 Chun-ju Zhao Zhi-guo Pan 《Water Science and Engineering》 EI CAS CSCD 2015年第2期164-173,共10页
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio... Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study. 展开更多
关键词 Slope excavation Quality assessment volume calculation Three-dimensional laser scanning technology
下载PDF
The Volume Calculation Method of Rock Collapses and Loess Landslides Triggered by the 1556 AD Huaxian M81/2 Earthquake in Shaanxi Province, China 被引量:2
2
作者 ZHANG Yanbo XU Yueren +3 位作者 DU Peng LI Wenqiao CHEN Lize TIAN Qinjian 《Earthquake Research in China》 CSCD 2020年第4期599-616,共18页
Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides,thus providing significant infor... Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides,thus providing significant information for the modification of the focal parameters of historical earthquakes.In this study,we select one rock fall and three loess landslides triggered by the 1556 AD Huaxian M8⅟􀄟earthquake,compute their volumes using the low-altitude high-precision Unmanned Aerial Vehicle(UAV)photogrammetry and landslide profile restoration methods.The results show that:①the whole influencing area of the Huangjiagou Rock Fall is approximately 3.03×105 m2 and the area of the collapsed rock accumulated at the slope foot is 3.33×104 m2,accounting for approximately 10%of the entire influencing range.However,the estimated volume of the collapsed rock is only 0.699×106 m3,indicating a rock fall with large influencing range but limited collapsed rock;②the geological form of thethree loess landslides are preserved intactly,with volumes of 0.283×108 m3,0.074×108 m3,and 0.377×108 m3.These important geological hazard relics reflect the strong vibrations and severe casualties in the meizoseismal area;③loess landslides are the key reason of the serious death toll in the hilly-gully loess area.Our new method can be used to estimate the influencing area and the actual volume of each individual landslide,and rationally evaluate the role of earthquake landslides in the disaster.In addition,quantitative research on secondary disasters triggered by strong historical earthquakes is beneficial for understanding the surface process and focal parameters of the earthquakes. 展开更多
关键词 1556 AD Huaxian earthquake Rock fall Loess landslide volume calculation
下载PDF
Three Dimensional Laser Point Cloud Slicing Method for Calculating Irregular Volume 被引量:6
3
作者 Bin LI Xiaofa ZHAO +3 位作者 Yong CHEN Junbo WEI Lu WANG Bochao MA 《Journal of Geodesy and Geoinformation Science》 2019年第4期31-43,共13页
Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effect... Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects. 展开更多
关键词 3DLS point cloud volume calculation point cloud slicing method point cloud segmenting method outline boundary polygon bidirectional search of the closest approach amplification effect morphological distortion
下载PDF
An Improved Method Based on Shallow Ice Approximation to Calculate Ice Thickness along Flow-Line and Volume of Mountain Glaciers 被引量:4
4
作者 李慧林 李忠勤 +1 位作者 张明军 李汶峰 《Journal of Earth Science》 SCIE CAS CSCD 2011年第4期441-448,共8页
To evaluate the water storage and project the future evolution of glaciers, the ice-thickness of glaciers is an essential input. However, direct measurements of ice thickness are labo- rious, not feasible everywhere, ... To evaluate the water storage and project the future evolution of glaciers, the ice-thickness of glaciers is an essential input. However, direct measurements of ice thickness are labo- rious, not feasible everywhere, and necessarily restricted to a small number of glaciers. In this article, we develop a simple method to estimate the ice-thickness along flow-line of mountain glaciers. Different from the traditional method based on shallow ice approximation (SIA), which gives a relationship be- tween ice thickness, surface slope, and yield stress of glaciers, the improved method considers and pre- sents a simple way to calibrate the influence of valley wall on ice discharge. The required inputs are the glacier surface topography and outlines. This shows the potential of the method for estimating the ice-thickness distribution and volume of glaciers without using of direct thickness measurements. 展开更多
关键词 improved method shallow ice approximation ice thickness calculation glacier volume calculation mountain glacier.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部