Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in...The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballist...A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computatio...Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.展开更多
基于Volume of Fluid(VOF)模型对二维溃坝经典案例进行模拟,通过与实验值进行对比,验证VOF模型的计算精度。针对二维溃坝下游有障碍物的情况,研究不同时刻的流场变化情况,与实验结果比较分析,并对障碍物所受到的压力进行分析。通过更改...基于Volume of Fluid(VOF)模型对二维溃坝经典案例进行模拟,通过与实验值进行对比,验证VOF模型的计算精度。针对二维溃坝下游有障碍物的情况,研究不同时刻的流场变化情况,与实验结果比较分析,并对障碍物所受到的压力进行分析。通过更改障碍物的位置,研究不同障碍物位置对溃坝水流的影响,不同障碍物位置所受到的压力。结果表明:VOF可以很好地模拟溃坝水流。对于下游有障碍物的溃坝模型,障碍物的最低点所受到的压力最大,最高点所受到的压力最小。障碍物位置距离溃坝水流越远,受到的压力越大,液面变化越剧烈,溃坝水流撞击障碍物行成的水舌高度越高,飞溅的水体也相应增加,水舌撞击右壁面的高度越大。展开更多
为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿...为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。展开更多
Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identificatio...Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble col...This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble column reactor was simulated. The grid independence study was first conducted and a grid size of 1.0 mm was adopted in order to minimize the computing time without compromising the accuracy of the results. The predictions were validated by comparing the experimental studies reported in the literature. It was found that all surface tension models can describe the bubble rise and bubble plume in a column with slight deviations.展开更多
A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions...A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.展开更多
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi...According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.展开更多
A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture v...A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed condui...Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed conduit flow under pressure and assuming zero shear stress at the top wall.This is known as the fixed lid model.By assuming the top wall to be a shear free wall,they have been able to show that the velocity distribution looks similar to that of an open channel flow with zero velocity at the bottom and maximum velocity at the top,representing the free water surface,but no information has been provided for the pressure at the free water surface.Because of this assumption,the validation of the model in predicting the trap efficiency has performed significantly poorly.In addition,the free water surface subject to zero gauge pressure cannot be modeled using the fixed lid model because there is no provision of extra space in the form of air space for the fluctuating part of the water surface profile.It can.however,be modeled using the volume of fluid(VOF) model because the VOF model is the appropriate model for open channel or free surface flow.Therefore,in the present study,three-dimensional(3D) computational fluid dynamics(CFD) modeling with the VOF model,which considers open channel flow with a free water surface,along with the stochastic DPM.was used to model the trap efficiency of an invert trap fitted in an open rectangular channel.The governing mathematical flow equations of the VOF model were solved using the ANSYS Fluent 14.0 software,reproducing the experimental conditions exactly.The results show that the 3D CFD predictions using the VOF model closely fit the experimental data for glass bead particles.展开更多
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and...This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
文摘The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金the support provided by the Royal Higher Institute for Defence (RHID) of the Belgian Defence, which has contributed to the progress of this ongoing research.
文摘A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
基金support by the Air Force Office of Scientific Research under Grant No.FA9550-20-1-0358 and Grant No.FA9550-22-1-0004.
文摘Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.
文摘基于Volume of Fluid(VOF)模型对二维溃坝经典案例进行模拟,通过与实验值进行对比,验证VOF模型的计算精度。针对二维溃坝下游有障碍物的情况,研究不同时刻的流场变化情况,与实验结果比较分析,并对障碍物所受到的压力进行分析。通过更改障碍物的位置,研究不同障碍物位置对溃坝水流的影响,不同障碍物位置所受到的压力。结果表明:VOF可以很好地模拟溃坝水流。对于下游有障碍物的溃坝模型,障碍物的最低点所受到的压力最大,最高点所受到的压力最小。障碍物位置距离溃坝水流越远,受到的压力越大,液面变化越剧烈,溃坝水流撞击障碍物行成的水舌高度越高,飞溅的水体也相应增加,水舌撞击右壁面的高度越大。
文摘为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。
基金supported by the grants from the Natural Science Foundation of Hubei Province(No.2020CFB780)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ020).
文摘Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
基金Supported by the National Ministry of Science and Technology of China(2017YFB0602401)the National Natural Science Foundation of China(21776173,91834303,U1862201,21625603)the Program of Shanghai Subject Chief Scientists(18XD1402000).
文摘This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble column reactor was simulated. The grid independence study was first conducted and a grid size of 1.0 mm was adopted in order to minimize the computing time without compromising the accuracy of the results. The predictions were validated by comparing the experimental studies reported in the literature. It was found that all surface tension models can describe the bubble rise and bubble plume in a column with slight deviations.
基金Project supported by the National Natural Science Foundation of China (No.10672097)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.
基金supported by the National Science and Technology Major Project (No. 2011ZX05019-008)the National Natural Science Foundation of China (No. 41074080)+1 种基金the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-05-11)supported by the CNPC international collaboration program through the Edinburgh Anisotropy Project (EAP) of the British Geological Survey (BGS) and the CNPC Key Geophysical Laboratory at the China University of Petroleum and CNPC geophysical prospecting projects for new method and technique research
文摘According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0708700).
文摘A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
文摘Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed conduit flow under pressure and assuming zero shear stress at the top wall.This is known as the fixed lid model.By assuming the top wall to be a shear free wall,they have been able to show that the velocity distribution looks similar to that of an open channel flow with zero velocity at the bottom and maximum velocity at the top,representing the free water surface,but no information has been provided for the pressure at the free water surface.Because of this assumption,the validation of the model in predicting the trap efficiency has performed significantly poorly.In addition,the free water surface subject to zero gauge pressure cannot be modeled using the fixed lid model because there is no provision of extra space in the form of air space for the fluctuating part of the water surface profile.It can.however,be modeled using the volume of fluid(VOF) model because the VOF model is the appropriate model for open channel or free surface flow.Therefore,in the present study,three-dimensional(3D) computational fluid dynamics(CFD) modeling with the VOF model,which considers open channel flow with a free water surface,along with the stochastic DPM.was used to model the trap efficiency of an invert trap fitted in an open rectangular channel.The governing mathematical flow equations of the VOF model were solved using the ANSYS Fluent 14.0 software,reproducing the experimental conditions exactly.The results show that the 3D CFD predictions using the VOF model closely fit the experimental data for glass bead particles.
文摘This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization