The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
BACKGROUND:Chloride channels participate in non-neuronal apoptosis.However,it remains unclear whether chloride channels are involved in ischemic neuronal apoptosis.OBJECTIVE:To explore the effects of 4-acetamido-4'...BACKGROUND:Chloride channels participate in non-neuronal apoptosis.However,it remains unclear whether chloride channels are involved in ischemic neuronal apoptosis.OBJECTIVE:To explore the effects of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS),two chloride channel blockers,on the hippocampal neuronal apoptosis induced by 3-morpholinosydnonimine (SIN-1) based on the nitric oxide toxicity theory of neuronal apoptosis following ischemic brain injury.DESIGN,TIME AND SETTING:Comparative observation and in vitro experiments were performed at the laboratory of Zhuhai Campus of Zunyi Medical College from January to May 2009.MATERIALS:SIN-1,SITS,and DIDS were purchased from Sigma,USA.METHODS:Hippocampal neurons from Sprague-Dawley rats,aged 1 day,were cultured In vitro for 12 days and randomly assigned to control,SIN-1,or chloride channel blocker groups.SIN-1 group neurons were induced by SIN-1 for 18 hours to establish a model of ischemic neuronal apoptosis.Neurons in chloride channel blocker groups were treated with SITS or DIDS plus SIN-1 for 18 hours.The controls were cultured in DMEM/Ham's F12 complete medium alone.MAIN OUTCOME MEASURES:The apoptotic neurons and nuclear appearance were detected by Hoechst 33258 fluorescence staining; neuronal viability was quantitatively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis.Caspase-3 activity was analyzed by Western blot.RESULTS:SIN-1 (1 mmol/L) dramatically induced apoptosis (50%-60%).SITS and DIDS inhibited nitric oxide-induced neuronal injury in a dose-dependent manner,suppressed caspase-3 activation,reduced neuronal apoptosis,and improved neuronal survival.CONCLUSION:Chloride channel blockers can protect against neuronal injury induced by NO.Chloride channels might be involved in neuronal apoptosis following cerebral ischemia.展开更多
AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney di...Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.展开更多
AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cance...AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction(RT-PCR).Four segments of small interference RNA(siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3%(P = 0.002) in SGC-7901 and 35.55%(P = 0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells(62.24%,P = 0.000) and MGC-803 cells(52.67%,P = 0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31%(P = 0.000) and 33.62%(P = 0.001) in SGC-7901 and 40.74%(P = 0.000) and 29.26%(P = 0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.展开更多
Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mm...Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mmol/L 3-morpholinosyndnomine (SIN-l), a nitric oxide donor. The models were then cultured with 0.1 mmol/L of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; the chloride channel blocker)for 18 hours. Neuronal survival was detected using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was assayed by Hoechst 33342-labeled neuronal DNA fluorescence staining. Western blot analysis and immunochemilumi- nescence staining were applied to determine the changes of activated caspase-3 and CIC-3 channel proteins. Real-time PCR was used to detect the mRNA expression of CIC-3. The results showed that SIN-1 reduced the neuronal survival rate, induced neuronal apoptosis, and promoted CIC-3 chloride channel protein and mRNA expression in the apoptotic neurons. DIDS reversed the effect of SIN-I. Our findings indicate that the increased activities of the CIC-3 chloride channel may be involved in hippocampal neuronal apoptosis induced by nitric oxide.展开更多
Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majorit...Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have latch) current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calciumactivated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBestl and Tweety2 appear as the best candidates to play a role in the injury-induced Icl(Ca) in DRG neurons.展开更多
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ...Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.展开更多
Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensi...Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.展开更多
A thiazolidinone CFTR inhibitor(CFTR_ inh-172 ) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of...A thiazolidinone CFTR inhibitor(CFTR_ inh-172 ) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor,CFTR_ inh-172 ,can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl- methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTR_ inh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay( K _d≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay( K _d≈0.2 μmol/L),indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTR_ inh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTR_ inh-172 for in vivo pharmacokinetics studies.展开更多
Objective: To investigate the role of ClC-3 chloride channel in the proliferation of breast cancer cell line Mcf-7 treated with curcumin and its specific mechanism. Methods: MTT assay was used to detect the effect of ...Objective: To investigate the role of ClC-3 chloride channel in the proliferation of breast cancer cell line Mcf-7 treated with curcumin and its specific mechanism. Methods: MTT assay was used to detect the effect of chloride channel blocker(DIDS) and curcumin on Mcf-7 and human normal cell viability. Patch-clamp technique was used to determine the current density before and after drug treatment. Apoptosis assay by flow cytometry was performed for further examination of cell apoptosis. Results: Curcumin had toxicity on Mcf-7 and HUVEC cells and DIDS reduced the survival rate of Mcf-7 cells by inhibiting proliferation. Curcumin could activate the chloride ion current on MCF-7 cell membrane, which would be inhibited by DIDS.Finally, curcumin in low concentration combined with DIDS could significantly promote the MCF-7 cells apoptosis. Conclusions: Our results suggest that ClC-3 protein is involved in the regulation of curcumin induced proliferation inhibiting in breast cancer cells through inducing cell apoptosis. ClC-3 may be a potential target of tumor therapy.展开更多
The cystic fibrosis transmembrane conductance regulator (CFFR) is a cAMP-activated chloride channel expressed in intestinal exoerine glands, which plays a key role in intestinal fluid secretion. A natural anthraquin...The cystic fibrosis transmembrane conductance regulator (CFFR) is a cAMP-activated chloride channel expressed in intestinal exoerine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone ac tivator of CFTR Cl^- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl^- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Treditional Chinese Medicine such as aloe, cascara and senna.展开更多
Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion, smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM16A...Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion, smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM16A(ANO1 or anoctamin-1) is a bona fide calcium-acvtivated chloride channel. A few small molecule CaCCs regulators are available for functional and therapeutic studies. We screened 126 natural compounds from Chinese herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells to coexpress ANO1 and an iodide-sensitive fluorescent indicator(EYFP-H148Q/I152L). Imperatorin, a coumarin compound, was identified to inhibit ANO1-mediated chloride transport activated by multiple calcium-elevating agonists. The inhibitory effect is dose-dependent with IC50~14.63 μmol/L. Interestingly, imperatorin activated CFTR chloride channel with EC50~35.52 μmol/L. The adverse effects of imperatorin on CaCC and CFTR chloride channels will make it useful in pharmacological dissection of chloride transport in airway and intestinal epithelium. Further studies are required to evaluate the therapeutic effects of imperatorin on hypertension, asthma and certain tumors.展开更多
In this paper,we study the complicated dynamics of general Morris-Lecar model with the impact of Cl<sup>-</sup> fluctuations on firing patterns of this neuron model. After adding Cl<sup>-</sup>...In this paper,we study the complicated dynamics of general Morris-Lecar model with the impact of Cl<sup>-</sup> fluctuations on firing patterns of this neuron model. After adding Cl<sup>-</sup> channel in the original Morris-Lecar model, the dynamics of the original model such as its bifurcations of equilibrium points would be changed and they occurred at different values compared to the primary model. We discover these qualitative changes in the point of dynamical systems and neuroscience. We will conduct the co-dimension two bifurcations analysis with respect to different control parameters to explore the complicated behaviors for this new neuron model.展开更多
Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate(C-A-S-H)with associated cation types of Ca,Mg,Na and K.The local io...Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate(C-A-S-H)with associated cation types of Ca,Mg,Na and K.The local ionic structure,atomic dynamics and bond stability were analyzed to elucidate the interaction between cations and chloride ions.The results show that interfacial chloride is absorbed through the ion pairing formation in the vicinity of C-A-S-H substrate.Interfacial cations can simultaneously interact aluminosilicate chains,water molecules and Cl^(-)ions,which restrict the motion of interfacial Cl^(-)ions.Pore solution chloride can be immobilized through the solvation effect of cations.Cations along with their hydration shell can connect to neighboring Cl^(-)ions to decrease their mobility.Owing to the varied ionic chemistry,cations show different interaction strength with neighboring water molecules and anions,which determines the chloride transport behavior in the nanopore of C-A-S-H.The chloride immobilization capacity of C-A-S-H nanopore with different associated cations is listed in following order:Mg^(2+)Ca^(2+)<Na^(+)≈K^(+),which agrees reasonably with previous experiments.展开更多
Vascular smooth muscle cells(VSMCs) are the major component of vascular wall which are often stretched and compressed by pounding intravascular pressure.These mechanical signals are usually transformed to electrical...Vascular smooth muscle cells(VSMCs) are the major component of vascular wall which are often stretched and compressed by pounding intravascular pressure.These mechanical signals are usually transformed to electrical signals by the opening or closing of ion channels in VSNCs and endothelial cells.Intravascular pressure causes a graded membrane potential depolarization of the VSMCs and leads to vasoconstriction(i.e.,myogenic response),independent of the vascular endothelium. Although the important role of cation channels including L-type Ca<sup>2+</sup> channels,K<sup>+</sup> channels,and TRP channels in the regulation of vascular tone has been well established the functional roles played by Cl<sup>-</sup> channels in the regulation of the membrane potential and vascular tone remain essentially obscure. Recent emerging evidence implicates very important roles of Cl<sup>-</sup> channels in vascular function ranging from the control of membrane potential equilibrium, vascular contraction and relaxation to the regulation of intracellular pH,cell volume homeostasis,cell proliferation,migration,and apoptosis.展开更多
Recent studies show that ion channels/transporters play important roles in fundamental cellular functions. Several reports indicating the important roles of Cl- channels/transporters on cell proliferation suggest that...Recent studies show that ion channels/transporters play important roles in fundamental cellular functions. Several reports indicating the important roles of Cl- channels/transporters on cell proliferation suggest that the intracellular chloride concentration ([Cl-]i) regulated by them would be one of critical messengers. We investigated whether the [Cl-]i controls cell proliferation and cell cycle progression in human gastric cancer cells. Our studies indicated that furosemide, a blocker of Na+ /K+ /2Cl- cotransporter (NKCC), diminished cell growth by delaying the G1-S phase progression in gastric cancer cells with high expression and activity of NKCC. Furthermore, we found that the culture in the low Cl- medium (replacement of Cl- by NO3-) decreased the [Cl-]i and inhibited cell growth of gastric cancer cells and that this inhibition of cell growth was due to cell cycle arrest at the G0/G1 phase caused by diminutionof CDK2 and phosphorylated Rb. The culture of cells in the low Cl- medium significantly increased expressions of p21 mRNA and protein. In addition, the low Cl- medium induced phosphorylation of mitogen activated protein kinases (MAPKs). Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl- medium and rescued gastric cancer cells from the low Cl- -induced G1 cell cycle arrest. These findings revealed that the [Cl-]i affects the cell proliferation via activation of MAPKs through upregulation of p21 in gastric cancer cells. Our results suggest that the [Cl-]i regulates important cellular functions in gastric cancer cells, leading to the development of novel therapeutic strategies.展开更多
Outwardly rectifying swelling-activated chloride conductance (ICl, Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and ...Outwardly rectifying swelling-activated chloride conductance (ICl, Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and molecular basis of this chloride conductance in rabbit heart ventricular myocytes is not clear. Candidate chloride channel clones (e.g. ClC-2, ClC-3, ClC-4 and ClC-5) were determined using RT-PCR and Western blot analysis.Whole cell ICl,Swell was recorded from isolated rabbit ventricular myocytes using patch clamp techniques during hypo-osmotic stress. The inhibitory effects of 4,4' isothiocyanato-2,2-disulfonic acid (DIDS), 5-nitro-2(3-phenylroylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94 (LAA-94) on ICl,Swell were examined. The expected size of PCR products for ClC-2, ClC-3 and ClC-4 but not for ClC-5 was obtained. ClC-2 and ClC-3 expression was confirmed by automated fluorescent DNA sequencing. RT-PCR and Western blot showed that ClC-4 was expressed in abundance and ClC-2 was expressed at somewhat lower levels. The biological and pharmacological properties of ICl,Swell, including outward rectification, activation due to cell volume change, sensitivity to DIDS, LAA-94 and NPPB were identical to those known properties of ICl,Swell in exogenously expressed systems and other mammals hearts. It was concluded that ClC-3 or ClC-4 might be responsible for the outwardly rectifying part of ICl,Wwell and may be the molecular targets of cardioprotection associated with ischemic preconditioning or hypo-osmotic shock.展开更多
Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus. The present study investigated the effects of the broad-spect...Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus. The present study investigated the effects of the broad-spectrum calcium channel blocker CdCI2 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis. The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisethiocyanostilbene-2, 2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-l-induced neuronal apoptosis. The calcium channel blocker CdCI2 did not increase the survival rate of neurons and did not affect SIN-l-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis. Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.展开更多
The Cl^- homeostasis was known as the major mechanism of soybean to achieve NaCl tolerance, but studies on the role of chloride channel under abiotic stress were relatively few. We cloned a putative CLC-type chloride ...The Cl^- homeostasis was known as the major mechanism of soybean to achieve NaCl tolerance, but studies on the role of chloride channel under abiotic stress were relatively few. We cloned a putative CLC-type chloride channel gene GmCLCnt from soybean via RACE and it was predicted to encode a protein of 783 amino acids with 9 possible transmembrane domains and 2 tandem CBS domains. Real-time RT-PCR analysis showed that the GmCLCnt gene was expressed in all tissues of soybean but enriched in leaves and its expression was induced by NaCl, polyethylene glycol (PEG), coldness and ABA treatments. The Arabidopsis seedlings overexpressing GmCLCnt were more tolerant to higher concentration of NaCl than those of wild type. The results suggested that the GmCLCnt may be a CLC-type chloride channel and play an important role in salt tolerance.展开更多
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.
基金the Science and Technology Department of Guizhou Province,No. (2007)2127the Key Development Program of Science and Technology Department of Guizhou Province,No. [2009]3075A Grant from the Science and Technology Department of Zhuhai,No. PC20081010
文摘BACKGROUND:Chloride channels participate in non-neuronal apoptosis.However,it remains unclear whether chloride channels are involved in ischemic neuronal apoptosis.OBJECTIVE:To explore the effects of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS),two chloride channel blockers,on the hippocampal neuronal apoptosis induced by 3-morpholinosydnonimine (SIN-1) based on the nitric oxide toxicity theory of neuronal apoptosis following ischemic brain injury.DESIGN,TIME AND SETTING:Comparative observation and in vitro experiments were performed at the laboratory of Zhuhai Campus of Zunyi Medical College from January to May 2009.MATERIALS:SIN-1,SITS,and DIDS were purchased from Sigma,USA.METHODS:Hippocampal neurons from Sprague-Dawley rats,aged 1 day,were cultured In vitro for 12 days and randomly assigned to control,SIN-1,or chloride channel blocker groups.SIN-1 group neurons were induced by SIN-1 for 18 hours to establish a model of ischemic neuronal apoptosis.Neurons in chloride channel blocker groups were treated with SITS or DIDS plus SIN-1 for 18 hours.The controls were cultured in DMEM/Ham's F12 complete medium alone.MAIN OUTCOME MEASURES:The apoptotic neurons and nuclear appearance were detected by Hoechst 33258 fluorescence staining; neuronal viability was quantitatively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis.Caspase-3 activity was analyzed by Western blot.RESULTS:SIN-1 (1 mmol/L) dramatically induced apoptosis (50%-60%).SITS and DIDS inhibited nitric oxide-induced neuronal injury in a dose-dependent manner,suppressed caspase-3 activation,reduced neuronal apoptosis,and improved neuronal survival.CONCLUSION:Chloride channel blockers can protect against neuronal injury induced by NO.Chloride channels might be involved in neuronal apoptosis following cerebral ischemia.
基金Supported by The "Eleventh Five-year Plan" for Medical Sci-ence Development of PLA,No.06MB243the National Natural Science Foundation of China,No.81101101 and No.51273165+1 种基金the Key Project of Chinese Ministry of Education,No.212149the Projects of Sichuan Province,No.2010SZ0294,No.2011JQ0032 and No.12ZB038
文摘AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
文摘Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.
基金Supported by The National Natural Science Foundation of China,No.30560151the Key Research Project of Guangxi Municipal Health Bureau,No.200824+1 种基金the Research Project of Guangxi Educational Department,No.201012MS062 and No. 2011105981002M204the Natural Science Foundation of Guangxi,No.0832113
文摘AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction(RT-PCR).Four segments of small interference RNA(siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3%(P = 0.002) in SGC-7901 and 35.55%(P = 0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells(62.24%,P = 0.000) and MGC-803 cells(52.67%,P = 0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31%(P = 0.000) and 33.62%(P = 0.001) in SGC-7901 and 40.74%(P = 0.000) and 29.26%(P = 0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.
基金supported by the National Natural Science Foundation of China,No.81160157a grant from Guizhou Science and Technology Department in China,No.SY20093075Technological Talents Funds of Guizhou Province in China,No.201209
文摘Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mmol/L 3-morpholinosyndnomine (SIN-l), a nitric oxide donor. The models were then cultured with 0.1 mmol/L of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; the chloride channel blocker)for 18 hours. Neuronal survival was detected using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was assayed by Hoechst 33342-labeled neuronal DNA fluorescence staining. Western blot analysis and immunochemilumi- nescence staining were applied to determine the changes of activated caspase-3 and CIC-3 channel proteins. Real-time PCR was used to detect the mRNA expression of CIC-3. The results showed that SIN-1 reduced the neuronal survival rate, induced neuronal apoptosis, and promoted CIC-3 chloride channel protein and mRNA expression in the apoptotic neurons. DIDS reversed the effect of SIN-I. Our findings indicate that the increased activities of the CIC-3 chloride channel may be involved in hippocampal neuronal apoptosis induced by nitric oxide.
文摘Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have latch) current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calciumactivated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBestl and Tweety2 appear as the best candidates to play a role in the injury-induced Icl(Ca) in DRG neurons.
基金supported by the National Natural Science Foundation of China, No. 81160157projects of Science and Technology Bureau of Guizhou Province, No.20093075, 20072127
文摘Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.
基金the Science and Technology Development Program of Jilin Province, No.20050407-6
文摘Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.
文摘A thiazolidinone CFTR inhibitor(CFTR_ inh-172 ) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor,CFTR_ inh-172 ,can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl- methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTR_ inh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay( K _d≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay( K _d≈0.2 μmol/L),indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTR_ inh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTR_ inh-172 for in vivo pharmacokinetics studies.
基金funded by grants from the Science and Technology Planning Projeet of Guangdong Province (2014A020211022)Technology Planning Project of Guangzhou (201510010074.201607010063 and 201607010216)
文摘Objective: To investigate the role of ClC-3 chloride channel in the proliferation of breast cancer cell line Mcf-7 treated with curcumin and its specific mechanism. Methods: MTT assay was used to detect the effect of chloride channel blocker(DIDS) and curcumin on Mcf-7 and human normal cell viability. Patch-clamp technique was used to determine the current density before and after drug treatment. Apoptosis assay by flow cytometry was performed for further examination of cell apoptosis. Results: Curcumin had toxicity on Mcf-7 and HUVEC cells and DIDS reduced the survival rate of Mcf-7 cells by inhibiting proliferation. Curcumin could activate the chloride ion current on MCF-7 cell membrane, which would be inhibited by DIDS.Finally, curcumin in low concentration combined with DIDS could significantly promote the MCF-7 cells apoptosis. Conclusions: Our results suggest that ClC-3 protein is involved in the regulation of curcumin induced proliferation inhibiting in breast cancer cells through inducing cell apoptosis. ClC-3 may be a potential target of tumor therapy.
文摘The cystic fibrosis transmembrane conductance regulator (CFFR) is a cAMP-activated chloride channel expressed in intestinal exoerine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone ac tivator of CFTR Cl^- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl^- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Treditional Chinese Medicine such as aloe, cascara and senna.
基金Supported by the National Natural Science Foundation of China(Nos.30670477, 30973577 and 30770493)the National Basic Research Program of China(No.2009CB521908)
文摘Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion, smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM16A(ANO1 or anoctamin-1) is a bona fide calcium-acvtivated chloride channel. A few small molecule CaCCs regulators are available for functional and therapeutic studies. We screened 126 natural compounds from Chinese herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells to coexpress ANO1 and an iodide-sensitive fluorescent indicator(EYFP-H148Q/I152L). Imperatorin, a coumarin compound, was identified to inhibit ANO1-mediated chloride transport activated by multiple calcium-elevating agonists. The inhibitory effect is dose-dependent with IC50~14.63 μmol/L. Interestingly, imperatorin activated CFTR chloride channel with EC50~35.52 μmol/L. The adverse effects of imperatorin on CaCC and CFTR chloride channels will make it useful in pharmacological dissection of chloride transport in airway and intestinal epithelium. Further studies are required to evaluate the therapeutic effects of imperatorin on hypertension, asthma and certain tumors.
文摘In this paper,we study the complicated dynamics of general Morris-Lecar model with the impact of Cl<sup>-</sup> fluctuations on firing patterns of this neuron model. After adding Cl<sup>-</sup> channel in the original Morris-Lecar model, the dynamics of the original model such as its bifurcations of equilibrium points would be changed and they occurred at different values compared to the primary model. We discover these qualitative changes in the point of dynamical systems and neuroscience. We will conduct the co-dimension two bifurcations analysis with respect to different control parameters to explore the complicated behaviors for this new neuron model.
基金Funded by the National Natural Science Foundation of China(Nos.52008002,U21A20149,U2006224 and 51978352)the Open Foundation of the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2022-22)Anhui Province Engineering Laboratory of Advanced Building Materials(No.JZCL2202ZR)。
文摘Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate(C-A-S-H)with associated cation types of Ca,Mg,Na and K.The local ionic structure,atomic dynamics and bond stability were analyzed to elucidate the interaction between cations and chloride ions.The results show that interfacial chloride is absorbed through the ion pairing formation in the vicinity of C-A-S-H substrate.Interfacial cations can simultaneously interact aluminosilicate chains,water molecules and Cl^(-)ions,which restrict the motion of interfacial Cl^(-)ions.Pore solution chloride can be immobilized through the solvation effect of cations.Cations along with their hydration shell can connect to neighboring Cl^(-)ions to decrease their mobility.Owing to the varied ionic chemistry,cations show different interaction strength with neighboring water molecules and anions,which determines the chloride transport behavior in the nanopore of C-A-S-H.The chloride immobilization capacity of C-A-S-H nanopore with different associated cations is listed in following order:Mg^(2+)Ca^(2+)<Na^(+)≈K^(+),which agrees reasonably with previous experiments.
文摘Vascular smooth muscle cells(VSMCs) are the major component of vascular wall which are often stretched and compressed by pounding intravascular pressure.These mechanical signals are usually transformed to electrical signals by the opening or closing of ion channels in VSNCs and endothelial cells.Intravascular pressure causes a graded membrane potential depolarization of the VSMCs and leads to vasoconstriction(i.e.,myogenic response),independent of the vascular endothelium. Although the important role of cation channels including L-type Ca<sup>2+</sup> channels,K<sup>+</sup> channels,and TRP channels in the regulation of vascular tone has been well established the functional roles played by Cl<sup>-</sup> channels in the regulation of the membrane potential and vascular tone remain essentially obscure. Recent emerging evidence implicates very important roles of Cl<sup>-</sup> channels in vascular function ranging from the control of membrane potential equilibrium, vascular contraction and relaxation to the regulation of intracellular pH,cell volume homeostasis,cell proliferation,migration,and apoptosis.
文摘Recent studies show that ion channels/transporters play important roles in fundamental cellular functions. Several reports indicating the important roles of Cl- channels/transporters on cell proliferation suggest that the intracellular chloride concentration ([Cl-]i) regulated by them would be one of critical messengers. We investigated whether the [Cl-]i controls cell proliferation and cell cycle progression in human gastric cancer cells. Our studies indicated that furosemide, a blocker of Na+ /K+ /2Cl- cotransporter (NKCC), diminished cell growth by delaying the G1-S phase progression in gastric cancer cells with high expression and activity of NKCC. Furthermore, we found that the culture in the low Cl- medium (replacement of Cl- by NO3-) decreased the [Cl-]i and inhibited cell growth of gastric cancer cells and that this inhibition of cell growth was due to cell cycle arrest at the G0/G1 phase caused by diminutionof CDK2 and phosphorylated Rb. The culture of cells in the low Cl- medium significantly increased expressions of p21 mRNA and protein. In addition, the low Cl- medium induced phosphorylation of mitogen activated protein kinases (MAPKs). Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl- medium and rescued gastric cancer cells from the low Cl- -induced G1 cell cycle arrest. These findings revealed that the [Cl-]i affects the cell proliferation via activation of MAPKs through upregulation of p21 in gastric cancer cells. Our results suggest that the [Cl-]i regulates important cellular functions in gastric cancer cells, leading to the development of novel therapeutic strategies.
基金a grant from Chinese Minis-try of Education for Returning Overseas Scholars.
文摘Outwardly rectifying swelling-activated chloride conductance (ICl, Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and molecular basis of this chloride conductance in rabbit heart ventricular myocytes is not clear. Candidate chloride channel clones (e.g. ClC-2, ClC-3, ClC-4 and ClC-5) were determined using RT-PCR and Western blot analysis.Whole cell ICl,Swell was recorded from isolated rabbit ventricular myocytes using patch clamp techniques during hypo-osmotic stress. The inhibitory effects of 4,4' isothiocyanato-2,2-disulfonic acid (DIDS), 5-nitro-2(3-phenylroylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94 (LAA-94) on ICl,Swell were examined. The expected size of PCR products for ClC-2, ClC-3 and ClC-4 but not for ClC-5 was obtained. ClC-2 and ClC-3 expression was confirmed by automated fluorescent DNA sequencing. RT-PCR and Western blot showed that ClC-4 was expressed in abundance and ClC-2 was expressed at somewhat lower levels. The biological and pharmacological properties of ICl,Swell, including outward rectification, activation due to cell volume change, sensitivity to DIDS, LAA-94 and NPPB were identical to those known properties of ICl,Swell in exogenously expressed systems and other mammals hearts. It was concluded that ClC-3 or ClC-4 might be responsible for the outwardly rectifying part of ICl,Wwell and may be the molecular targets of cardioprotection associated with ischemic preconditioning or hypo-osmotic shock.
基金Supported by the Science and Technology Department of Guizhou Province, No. C20072127, SY20093075the Science and Technology Department of Zhuhai City, No. PC20081010
文摘Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus. The present study investigated the effects of the broad-spectrum calcium channel blocker CdCI2 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis. The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisethiocyanostilbene-2, 2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-l-induced neuronal apoptosis. The calcium channel blocker CdCI2 did not increase the survival rate of neurons and did not affect SIN-l-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis. Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.
基金supported by the National Natural Science Foundation of China (30490251)
文摘The Cl^- homeostasis was known as the major mechanism of soybean to achieve NaCl tolerance, but studies on the role of chloride channel under abiotic stress were relatively few. We cloned a putative CLC-type chloride channel gene GmCLCnt from soybean via RACE and it was predicted to encode a protein of 783 amino acids with 9 possible transmembrane domains and 2 tandem CBS domains. Real-time RT-PCR analysis showed that the GmCLCnt gene was expressed in all tissues of soybean but enriched in leaves and its expression was induced by NaCl, polyethylene glycol (PEG), coldness and ABA treatments. The Arabidopsis seedlings overexpressing GmCLCnt were more tolerant to higher concentration of NaCl than those of wild type. The results suggested that the GmCLCnt may be a CLC-type chloride channel and play an important role in salt tolerance.