This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is...This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is given. Then we prove that under certain conditions, the solution is a kind of fractal function, which is continuous, differentiable nowhere in its domain. Next, for specific given initial position and 3 different initial velocities, the graphs of solutions are sketched. By computing the box dimensions of boundaries of cross-sections for solution surfaces, we evaluate the range of box dimension of the vibrating membrane. The second case is the equation with p-type derivative. The corresponding solution is shown and numerical example is given.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10571084)
文摘This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is given. Then we prove that under certain conditions, the solution is a kind of fractal function, which is continuous, differentiable nowhere in its domain. Next, for specific given initial position and 3 different initial velocities, the graphs of solutions are sketched. By computing the box dimensions of boundaries of cross-sections for solution surfaces, we evaluate the range of box dimension of the vibrating membrane. The second case is the equation with p-type derivative. The corresponding solution is shown and numerical example is given.