Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited s...Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.展开更多
Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is...Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.展开更多
TiO2-W films were deposited on the slides by reactive magnetron sputtering. Properties of the films were analyzed via AFM, XRD, XPS, STS, UV-Vis and ellipse polarization apparatus. The results show that TiO2-W films a...TiO2-W films were deposited on the slides by reactive magnetron sputtering. Properties of the films were analyzed via AFM, XRD, XPS, STS, UV-Vis and ellipse polarization apparatus. The results show that TiO2-W films are amorphous. The AFM map reveals that the surface of the film is tough and porous. The experiments of decomposing methylene blue indicate that the thickness threshold on these films is 141 nm, at which the rate of photodegradation is 90% in 2 h. And when the thickness is over 141 nm, the rate of photodegradation does not increase any more. This result is completely different from that of crystalloid TiO2 thin film.展开更多
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical ...Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
基金Item Sponsored by National Natural Science Foundation of China(20571067)
文摘Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.
基金Project(05JJ3005)supported by the Natural Science Foundation of Hunan Province,China
文摘Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology.Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied.It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that,the critical load is doubled over than the sample only sputter-cleaned by ion beam.The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed.With the help of mid-energy Ar+ion beam,W atoms can diffuse into the Fe-substrate surface layer;Fe atoms in the substrate surface layer and W atoms interlace with one another;and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed.The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.
基金Projects supported by the Innovative Experiment Projects of New Building Materials Key Laboratory of Chonging University
文摘TiO2-W films were deposited on the slides by reactive magnetron sputtering. Properties of the films were analyzed via AFM, XRD, XPS, STS, UV-Vis and ellipse polarization apparatus. The results show that TiO2-W films are amorphous. The AFM map reveals that the surface of the film is tough and porous. The experiments of decomposing methylene blue indicate that the thickness threshold on these films is 141 nm, at which the rate of photodegradation is 90% in 2 h. And when the thickness is over 141 nm, the rate of photodegradation does not increase any more. This result is completely different from that of crystalloid TiO2 thin film.
基金supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No.2009AA03Z428)
文摘Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.