A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1...A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1-butanol / cyclohexane/phosphate buffer solution. The result shows that when the ratio of mol concentration of 1-butanol to 1-hexanoic acid is about 3.0, the initial rate V0 get the maximum values. This phenomenon was explained by the modified fishlike phase diagrams.展开更多
The stabilizing conditions of W/O microemulsion of Tx 6~C 4H 9OH/c C 6H 12 /H 2O system were studied by visual observation. The result shows that when the weight ratio of Tx 6 to C 4H 9OH is 4∶1,the W/O...The stabilizing conditions of W/O microemulsion of Tx 6~C 4H 9OH/c C 6H 12 /H 2O system were studied by visual observation. The result shows that when the weight ratio of Tx 6 to C 4H 9OH is 4∶1,the W/O microemulsion system has stabilizing and extensive regions, and the system is insensitive to the values of pH and in the range of room temperature.In accordance with the theoretical value of HLB,the suitable value of HLB for Tx 6 and C 4H 9OH to compose microemulsion is greater than 9,less than or equal to 10.展开更多
The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed...The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.展开更多
Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscop...Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, and electron diffraction. The results indicate that the size and the shape of the rice-like CdS particles can be influenced by the molar ratio of water to the surfactant(w value) and the reactant concentrations.展开更多
Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respec...Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respectively.The ultrafine Al2O3 particles are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)and their size and distribution are measured. The effects of water, surfactallt and reactant concentrations on the particlesize and distribution are studied. The results show that the particle size and distribution can be changed by varying thepreparation conditions, and the size of the microemulsion droplets has a controlling effect on the size of the pafticles. A. possible mechanism of ultrafine particles (UFPs) prepared by microemulsions is proposed.展开更多
A water-in-oil (W/O) microemulsion composed of Triton X-100, n-hexanol, n-hexane and water solution with hydrochloric acid was prepared. K3Fe(CN)6 was added in as a water-soluble electroactive probe, and its electroch...A water-in-oil (W/O) microemulsion composed of Triton X-100, n-hexanol, n-hexane and water solution with hydrochloric acid was prepared. K3Fe(CN)6 was added in as a water-soluble electroactive probe, and its electrochemical behavior was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the H+ concentration of the water phase has a great effect on the conductivity of the W/O microemulsion, and hence influences the electrochemical behavior of K3Fe(CN)6. When the pH value of water phase is about 7, the electrical conductivity of the W/O microemulsion is only 1.2×10-6 S/cm, and K3Fe(CN)6 almost cannot react at the glassy carbon electrode. But when the H+ concentration is more than 3 mol/L, the W/O microemulsion has a good electrical conductivity and K3Fe(CN)6 shows good electrochemical performance in it. The results of CV and EIS studies indicate that the electrochemical behavior of Fe(CN)63-/Fe(CN)64- in the W/O microemulsion is different from that in the aqueous solution. This may be due to the unique liquid structure of the W/O microemulsion and the unique mass transfer in the W/O microemulsion.展开更多
The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The bro...The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The broad peak obtained for hydroxy(O-H) of water has been resolved by least square curve-fitting. It has been observed that the water solubilized in microemul-sion droplets has four states, i.e. bound water with sulfo-group, free water, bound water with sodium counterion in the water pool of microemulsion droplets and a small amount of trapped water in the palisade layer of microemulsion droplets. The following have also been determined: the aggregation number (n), the radius of the water pool in the microemulsions(rw), the thickness of the bound water with sulfo-group(d1), the thickness of the bound water with sodium counterion(d2), the total thickness of the bound water (d) and the effective area of head groups of AOT(AAOT).展开更多
Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have b...Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have been investigated by least square curve fitting. The results indicate that an asymmetric adsorbed peak of carbonyl stretching vibration of AOT molecule is situated in (1739 ± 1) and (1725 ± 2) cm-1. The two peaks correspond to different carbonyls in gauche conformation and trans conformation of AOT molecules, respectively. With different water contents (W 0), the variations of peak intensity ratio (I r1= I 1739/I 1725) reflect the change of the ratio for the two conformation populations and the variations of the effective head-group area of AOT molecule have relations to the ratio of two conformation populations.展开更多
Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 ...Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 am exhibit a well-crystallized one-dimensional (1D) structure over several hundreds nanometers in length and mainly grow along the 〈111〉 direction. However, without CTAB, only cubic and hexagonal bulks are obtained. Without emulsifier, short and thick nanowhiskers can be prepared but they are apt to agglomerate. The possible growth mechanism of Cu2O nanowhiskers is speculated. The surfactant and the microemulsion system are related to the 1D shape formation and the even dispersion of Cu2O nanomaterials, respectively.展开更多
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ...Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.展开更多
The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the part...The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the participation of charge-transfer complex(CTC). four reactivity ratios and the relative reactivity of free monomers and CTC were obtained. The result was compared with that measured by Mayo-Lewis method.展开更多
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 t...The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.展开更多
To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in whi...To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in which the outer oil phase was silicone oil and the inner oil phase was solid lipid nanoparticles coated with organic sun-screening agent.Several influencing factors on the formation and stability of the emulsion were analyzed,including inorganic salts,the volume fraction of outer oil phase(silicone oil),and the dosage of W/O emulsifier.The in vitro sunscreen performance,water resistance and skin permeability of different types of sunscreen emulsions were further studied.The results showed that the sunscreen O/W/Si multiple emulsion containing 22.5%silicone oil,2.5%emulsifier and 0.2%NaCl had the best stability under the experimental conditions.The SPF value and water resistance of sunscreen O/W/Si multiple emulsion were slightly higher than those of sunscreen W/O emulsion,but significantly higher than those of sunscreen O/W emulsion.Compared with sunscreen W/O emulsion,the in vitro transdermal permeability of organic sun-screening agent in sunscreen O/W/Si multiple emulsion was reduced by approximately 60%,indicative of higher safety and good application prospect in sunscreen cosmetics.展开更多
文摘A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1-butanol / cyclohexane/phosphate buffer solution. The result shows that when the ratio of mol concentration of 1-butanol to 1-hexanoic acid is about 3.0, the initial rate V0 get the maximum values. This phenomenon was explained by the modified fishlike phase diagrams.
文摘The stabilizing conditions of W/O microemulsion of Tx 6~C 4H 9OH/c C 6H 12 /H 2O system were studied by visual observation. The result shows that when the weight ratio of Tx 6 to C 4H 9OH is 4∶1,the W/O microemulsion system has stabilizing and extensive regions, and the system is insensitive to the values of pH and in the range of room temperature.In accordance with the theoretical value of HLB,the suitable value of HLB for Tx 6 and C 4H 9OH to compose microemulsion is greater than 9,less than or equal to 10.
基金supported by National Natural Science Foundation of China(20871009)the Fundamental Research Funds for the Central Universities
文摘The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.
文摘Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, and electron diffraction. The results indicate that the size and the shape of the rice-like CdS particles can be influenced by the molar ratio of water to the surfactant(w value) and the reactant concentrations.
文摘Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respectively.The ultrafine Al2O3 particles are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)and their size and distribution are measured. The effects of water, surfactallt and reactant concentrations on the particlesize and distribution are studied. The results show that the particle size and distribution can be changed by varying thepreparation conditions, and the size of the microemulsion droplets has a controlling effect on the size of the pafticles. A. possible mechanism of ultrafine particles (UFPs) prepared by microemulsions is proposed.
基金Projects(20673036, J0830415) supported by the National Natural Science Foundation of ChinaProjects(05JT1026, 2007JT2013) supported by the Science Technology Project of Hunan Province, China
文摘A water-in-oil (W/O) microemulsion composed of Triton X-100, n-hexanol, n-hexane and water solution with hydrochloric acid was prepared. K3Fe(CN)6 was added in as a water-soluble electroactive probe, and its electrochemical behavior was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the H+ concentration of the water phase has a great effect on the conductivity of the W/O microemulsion, and hence influences the electrochemical behavior of K3Fe(CN)6. When the pH value of water phase is about 7, the electrical conductivity of the W/O microemulsion is only 1.2×10-6 S/cm, and K3Fe(CN)6 almost cannot react at the glassy carbon electrode. But when the H+ concentration is more than 3 mol/L, the W/O microemulsion has a good electrical conductivity and K3Fe(CN)6 shows good electrochemical performance in it. The results of CV and EIS studies indicate that the electrochemical behavior of Fe(CN)63-/Fe(CN)64- in the W/O microemulsion is different from that in the aqueous solution. This may be due to the unique liquid structure of the W/O microemulsion and the unique mass transfer in the W/O microemulsion.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 299730231), VSF of Ministry of Education of China and State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation.
文摘The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The broad peak obtained for hydroxy(O-H) of water has been resolved by least square curve-fitting. It has been observed that the water solubilized in microemul-sion droplets has four states, i.e. bound water with sulfo-group, free water, bound water with sodium counterion in the water pool of microemulsion droplets and a small amount of trapped water in the palisade layer of microemulsion droplets. The following have also been determined: the aggregation number (n), the radius of the water pool in the microemulsions(rw), the thickness of the bound water with sulfo-group(d1), the thickness of the bound water with sodium counterion(d2), the total thickness of the bound water (d) and the effective area of head groups of AOT(AAOT).
基金This work was supported by the National Natural Science Foundation of China (Grant No.29973023) Visiting Scholar Foundation of Ministry of Education and State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum Institu
文摘Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have been investigated by least square curve fitting. The results indicate that an asymmetric adsorbed peak of carbonyl stretching vibration of AOT molecule is situated in (1739 ± 1) and (1725 ± 2) cm-1. The two peaks correspond to different carbonyls in gauche conformation and trans conformation of AOT molecules, respectively. With different water contents (W 0), the variations of peak intensity ratio (I r1= I 1739/I 1725) reflect the change of the ratio for the two conformation populations and the variations of the effective head-group area of AOT molecule have relations to the ratio of two conformation populations.
基金This work was financially supported by the National Natural Science Foundation of China (No. 20207002).
文摘Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 am exhibit a well-crystallized one-dimensional (1D) structure over several hundreds nanometers in length and mainly grow along the 〈111〉 direction. However, without CTAB, only cubic and hexagonal bulks are obtained. Without emulsifier, short and thick nanowhiskers can be prepared but they are apt to agglomerate. The possible growth mechanism of Cu2O nanowhiskers is speculated. The surfactant and the microemulsion system are related to the 1D shape formation and the even dispersion of Cu2O nanomaterials, respectively.
基金Supported by the Trans-century Training Programme Foundation for the Talents by the Ministry of Education of China (No.2002-48).
文摘Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.
文摘The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the participation of charge-transfer complex(CTC). four reactivity ratios and the relative reactivity of free monomers and CTC were obtained. The result was compared with that measured by Mayo-Lewis method.
基金Ting-ting FENG acknowledges the financial support from Professor Paul V.BRAUN at Department of Materials Science and Engineering,University of Illinois at Urbana-Champaign,the support from Chinese Scholarship Council during her visit to University of Illinois at Urbana-Champaign,partial financial supports from Department of Science and Technology of Sichuan Province,China(2019YFH0002,2019YFG0222 and 2019YFG0526).The research was partly carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities,University of Illinois at Urbana-Champaign.
文摘The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.
文摘To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in which the outer oil phase was silicone oil and the inner oil phase was solid lipid nanoparticles coated with organic sun-screening agent.Several influencing factors on the formation and stability of the emulsion were analyzed,including inorganic salts,the volume fraction of outer oil phase(silicone oil),and the dosage of W/O emulsifier.The in vitro sunscreen performance,water resistance and skin permeability of different types of sunscreen emulsions were further studied.The results showed that the sunscreen O/W/Si multiple emulsion containing 22.5%silicone oil,2.5%emulsifier and 0.2%NaCl had the best stability under the experimental conditions.The SPF value and water resistance of sunscreen O/W/Si multiple emulsion were slightly higher than those of sunscreen W/O emulsion,but significantly higher than those of sunscreen O/W emulsion.Compared with sunscreen W/O emulsion,the in vitro transdermal permeability of organic sun-screening agent in sunscreen O/W/Si multiple emulsion was reduced by approximately 60%,indicative of higher safety and good application prospect in sunscreen cosmetics.