期刊文献+
共找到781篇文章
< 1 2 40 >
每页显示 20 50 100
Microstructural characterization,tribological and corrosion behavior of AA7075-TiC composites
1
作者 Surendarnath Sundaramoorthy Ramesh Gopalan Ramachandran Thulasiram 《China Foundry》 SCIE EI CAS CSCD 2024年第4期334-342,共9页
Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in s... Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in structural applications needs the engineering industries to seek aluminum alloy with new versions of hard and brittle ceramic particles.The microstructure,hardness,wear and corrosion behaviors of AA7075 composites with 2.5wt.%and 5wt.%TiC particles were studied.Microscopic analysis is evident that the transformation of the strong dendritic morphology to non-dendritic morphology on the incorporation of TiC into AA7075.Furthermore,the precipitation of the second-phase compounds such as Al_(2)CuMg,Al_(2)Cu andFe-rich Al_6(Cu,Fe)/Al_(7)Cu_(2)Fe)is promoted by TiC particles at inter-and intra-dendritic regions.Accordingly,the hardness of composites is improved by grain boundary strengthening and particulate strengthening mechanisms.Both coefficient of friction and wear rate have an inverse relation with TiC concentration.The base alloy without TiC shows adhesive-type wear-induced deformation due to the formation of an oxide film,while composite samples exhibit a mechanically mixed layer and abrasive-type wear behavior.Composite samples shows a higher corrosion rate due to the presence of numerous precipitates which promote pitting corrosion. 展开更多
关键词 AA7075 alloy tic reinforcement composite microstructure WEAR corrosion TRIBOLOGICAL
下载PDF
Evolution of microstructure and mechanical properties in multi-layer 316L-TiC composite fabricated by selective laser melting additive manufacturing
2
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TASCI Elina AKBARZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2973-2991,共19页
In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,... In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles. 展开更多
关键词 multilayer metal-ceramic composites selective laser melting functionally graded materials 316 L stainless steel tic
下载PDF
Comparative Assessment on Microstructure and Properties of in-situ TiC+Ti_(5)Si_(3)Reinforced TiAl-Sn-Zr Matrix Composites by Spark Plasma Sintering and Argon Protected Sintering 被引量:1
3
作者 姚辉 许晓静 +4 位作者 CAI Chengbin LI Chen CHEN Fenghua LIU Yangguang XIAO Yishui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期199-205,共7页
The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium ma... The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials. 展开更多
关键词 powder metallurgy titanium matrix composites High-temperature oxidation tic and Ti_(5)Si_(3) Ti-Al-Sn-Zr
下载PDF
纳米TiC浓度对双脉冲电沉积Ni-TiC复合镀层结构及性能的影响
4
作者 任鑫 王港 +3 位作者 孙涛 吴双全 霍欢 王浩雨 《材料热处理学报》 CAS CSCD 北大核心 2024年第4期167-173,共7页
研究了镀液中纳米TiC的添加量对双脉冲电沉积Ni-TiC复合镀层结构及性能的影响。通过扫描电镜(SEM)和X射线衍射(XRD)对镀层的表面形貌和物相进行了表征,并研究了镀层的表面粗糙度、显微硬度、耐磨性能和耐腐蚀性能。结果表明:当镀液中Ti... 研究了镀液中纳米TiC的添加量对双脉冲电沉积Ni-TiC复合镀层结构及性能的影响。通过扫描电镜(SEM)和X射线衍射(XRD)对镀层的表面形貌和物相进行了表征,并研究了镀层的表面粗糙度、显微硬度、耐磨性能和耐腐蚀性能。结果表明:当镀液中TiC浓度较低时,复合镀层表现为类似于纯Ni镀层的胞状沉积结构。当镀液中TiC浓度较高时,复合镀层表现为菜花状沉积结构。当纳米TiC浓度为8 g/L时,镀层表面致密性相对较高,Ni的衍射峰有明显的宽化现象。随着镀液中纳米TiC浓度的升高,复合镀层的磨损质量损失比表现为先下降后上升的趋势,当TiC浓度为8 g/L时,磨损质量损失比最小,为5.436%。当镀液中纳米TiC浓度为8 g/L时,镀层的自腐蚀电流密度最小,极化电阻值最大。结果表明双向脉冲电沉积制备Ni-TiC复合镀层镀液中最佳纳米TiC浓度为8 g/L。 展开更多
关键词 双向脉冲电沉积 纳米tic 镍基复合镀层 微观结构 性能
下载PDF
激光金属沉积制备TiC/316L复合材料的组织及力学性能研究
5
作者 李亚杰 张爽 +1 位作者 秦凤明 李亚菲 《金属加工(热加工)》 2024年第11期17-21,27,共6页
激光金属沉积(LMD)技术可同时实现输送粉末和聚焦激光能量,材料成形率高,能够显著提升材料性能和降低制造成本,具有广泛的应用前景。采用LMD技术制备TiC含量为0%、0.5%、1%和2%的TiC/316L不锈钢复合材料,研究了增强体含量对复合材料组... 激光金属沉积(LMD)技术可同时实现输送粉末和聚焦激光能量,材料成形率高,能够显著提升材料性能和降低制造成本,具有广泛的应用前景。采用LMD技术制备TiC含量为0%、0.5%、1%和2%的TiC/316L不锈钢复合材料,研究了增强体含量对复合材料组织和力学性能的影响。结果表明:通过金相技术观察样品微观结构发现,熔池形貌呈鱼鳞状形貌,中心区域主要为等轴晶粒,熔池边缘区域主要以柱状晶粒为主,相邻熔池之间的柱状晶粒呈外延生长关系,等轴晶粒尺寸分布在10~50μm,而大多数柱状晶粒尺寸超过100μm。随着TiC颗粒含量的增加,复合材料的抗拉强度显著提升,当添加量达到1%时,试样的抗拉强度由623MPa提高至679MPa,且保持30.42%的良好伸长率;然而,当添加量增至2%时,伸长率下降至5.1%,组织中出现了TiC颗粒的团聚现象。 展开更多
关键词 激光金属沉积 tic/316L复合材料 组织结构 拉伸性能
下载PDF
FORMATION MECHANISM OF TiC IN Al/TiC COMPOSITES PREPARED BY DIRECT REACTION SYNTHESIS 被引量:3
6
作者 Zhang, Erlin Bo, Yang +2 位作者 Zeng, Songyan Li, Qingchun Ma, Mingzhen 《中国有色金属学会会刊:英文版》 EI CSCD 1998年第1期93-97,共5页
FORMATIONMECHANISMOFTiCINAl/TiCCOMPOSITESPREPAREDBYDIRECTREACTIONSYNTHESIS①ZhangErlin,YangBo,ZengSongyanandL... FORMATIONMECHANISMOFTiCINAl/TiCCOMPOSITESPREPAREDBYDIRECTREACTIONSYNTHESIS①ZhangErlin,YangBo,ZengSongyanandLiQingchunNational... 展开更多
关键词 REACTION composites Al/tic microstructure MECHANISM
下载PDF
Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites 被引量:8
7
作者 Jian-ying WANG Jing-hua FANG +5 位作者 Hai-lin YANG Zhi-lin LIU Rui-di LI Shou-xun JI Yun WANG Jian-ming RUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1484-1494,共11页
The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the ... The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications. 展开更多
关键词 tic Fe40Mn40Cr10Co10/tic composites mechanical properties wear resistance spark plasma sintering
下载PDF
Preparation of TiC/Ni_3Al Composites by Upward Melt Infiltration 被引量:6
8
作者 Yi PAN (Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China) Kewei SUN (National Engineering Research Center of Solid Waste Resources Recovery, Kunming University of Science and Technology,Kunming 650093, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期387-392,共6页
TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3A... TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration. 展开更多
关键词 tic Preparation of tic/Ni3Al composites by Upward Melt Infiltration NI AL
下载PDF
Improving Densification and Mechanical Properties of FeAl/TiC Composites by Addition of Ni 被引量:4
9
作者 Yong LIU, Fengxiao LIU, Baiyun HUANG, Kechao ZHOU, Yuehui HE and Zhihong TANGNational Key Lab for P/M, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第1期73-76,共4页
FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of th... FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase. 展开更多
关键词 of in it on tic Improving Densification and Mechanical Properties of FeAl/tic composites by Addition of Ni by
下载PDF
Effect of rare earth La_2O_3 on the microstructure and mechanical properties of TiC/W composites 被引量:2
10
作者 CHEN Yong WU Yucheng +1 位作者 YU Fuwen CHEN Junling 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期632-636,共5页
In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Expe... In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Experimental results show that the grain size of the TiC/W composites is reduced by TiC particles. When 0.5 wt.% La2O3 is added to the composites, the grain size is reduced further. According to TEM analysis, La2O3 can alleviate the aggregation of TiC particles. With La2O3 addition, the relative density of the TiC/W composites can be improved from 95.1% to 96.5%. The hardness and elastic modulus of the TiC/W + 0.5 wt.% La2O3 composite are little improved, but the flexural strength and the fracture toughness increase to 796 MPa and 10.07 MPa·m^1/2 respectively, which are higher than those of the TiC/W composites. 展开更多
关键词 tic/W composites rare earth oxides MICROSTRUCTURE mechanical properties
下载PDF
Friction behavior of Ti-30Fe composites strengthened by TiC particles 被引量:4
11
作者 Sheng-hang XU Jing-wen QIU +3 位作者 Hui-bin ZHANG Hua-zhen CAO Guo-qu ZHENG Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期988-998,共11页
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and... Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials. 展开更多
关键词 tic particle Ti-Fe based composite powder metallurgy MICROSTRUCTURE friction behavior
下载PDF
Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting 被引量:3
12
作者 J.JEBEEN MOSES I.DINAHARAN S.JOSEPH SEKHAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1498-1511,共14页
Stir casting was used to produce AA6061/15%TiC (mass fraction) aluminum matrix composites (AMCs). An empirical relationship was developed to predict the effect of stir casting parameters on the ultimate tensile ... Stir casting was used to produce AA6061/15%TiC (mass fraction) aluminum matrix composites (AMCs). An empirical relationship was developed to predict the effect of stir casting parameters on the ultimate tensile strength (UTS) of AA6061/TiC AMCs. A central composite rotatable design consisting of four factors and five levels was used to minimize the number of experiments, i.e., castings. The factors considered were stirring speed, stirring time, blade angle and casting temperature. The effect of those factors on the UTS of AA6061/TiC AMCs was derived using the developed empirical relationship and elucidated using microstructural characterization. Each factor significantly influenced the UTS. The variation in the UTS was attributed to porosity content, cluster formation, segregation of TiC particles at the grain boundaries and homogenous distribution in the aluminum matrix. 展开更多
关键词 aluminum matrix composite stir casting tic tensile strength
下载PDF
Microstructure and mechanical properties of Al-TiB_2/TiC in situ composites improved via hot rolling 被引量:3
13
作者 Jin-feng NIE Fang WANG +3 位作者 Yu-sheng LI Yan-fang LIU Xiang-fa LIU Yong-hao ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2548-2554,共7页
A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the ... A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies. 展开更多
关键词 in-situ composites TiB2/tic particles ROLLING mechanical property
下载PDF
Effect of Silver Element on Microstructure and Properties of W-30Cu/TiC Composites 被引量:1
14
作者 CHEN Xiaoli LUO Laima WU Yueheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1511-1515,共5页
W-30 wt%Cu and TiC-50 wt%Ag were successfully synthesized by a novel simplified pretreatment followed by electroless plating. The 0 wt% TiC, 0.5 wt% TiC, and 0.5 wt%TiC-0.5 wt%Ag composite powders were added to W-30 w... W-30 wt%Cu and TiC-50 wt%Ag were successfully synthesized by a novel simplified pretreatment followed by electroless plating. The 0 wt% TiC, 0.5 wt% TiC, and 0.5 wt%TiC-0.5 wt%Ag composite powders were added to W-30 wt%Cu composite powders by blending, and then reduced. The reduced W-30 Cu, W-30 Cu/0.5 TiC, and W-30 Cu-0.5 Ag/0.5 TiC composite powders were then compacted and sintered at 1 300 ℃ in protective hydrogen for 60 min. The phase and morphology of the composite powders and materials were analyzed using X-ray diffraction and field emission scanning electron microscopy. The relative density, electrical conductivity, and hardness of the sintered samples were examined. Results showed that W-30 Cu and TiC-Ag composite powders with uniform structure were obtained using simplified pretreatment followed by electroless plating. The addition of TiC particles can significantly increase the compressive strength and hardness of the W-30 Cu composite material but decrease the electrical conductivity. Next, 0.5 wt% Ag was added to prepare W-30 Cu-0.5 Ag/TiC composites with excellent electrical conductivity. The electrical conductivity of these composites(61.2%) is higher than that in the national standard(the imaginary line denotes electrical conductivity of GB IACS 42%) of 45.7%. 展开更多
关键词 electroless plating silver element W-30Cu-0.5Ag/tic composites electrical conductivity
下载PDF
Melt Infiltration Ability and Microstructural Evolution of Fe40Al/ TiC Composites System 被引量:2
15
作者 F J Oliveira J L Baptista J M Vieira 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期93-,共1页
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor... Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution. 展开更多
关键词 tic composites System Melt Infiltration Ability and Microstructural Evolution of Fe40Al FE
下载PDF
Microstructure Characteristic of In-situ Ti/TiC Composites 被引量:1
16
作者 Bo YANG Beijing institute of Aeronauticul Materials, Beijing 100095, China Erlin ZHANG Yunxue JIN Zhaojun ZHU and Songyan ZENG National Key Lab. of Precision Hot Processing of Metals, Harbin institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期103-104,共2页
TiC reinforced titanium composites has been produced with different Al content and C content by XDTM. The results have shown that TiC particles are of two different morphologies f coarse dendritical primary TiC and sh... TiC reinforced titanium composites has been produced with different Al content and C content by XDTM. The results have shown that TiC particles are of two different morphologies f coarse dendritical primary TiC and short bar-shape eutectic TiC. Al content has great effects on the morphology of TiC. With the increasing of Al content, the morphology of primary TiC changes from coarse developed dendrite into short bar-shape or plate--shape TiC with 35%Al. Meanwhile, the structure of the matrix changes from single Ti to Ti and Ti3Al, and to Ti3Al and TiAl. However, the C content has no influence on the microstructure of matrix. When the C content is less than 1.2%, the dendrite TiC disappears and only short bar-shape or plate-shape TiC exists in the composites. In addition, the effect of he3t treatment on the morphology of TiC has also Studied. 展开更多
关键词 tic Microstructure Characteristic of In-situ Ti/tic composites
下载PDF
烧结温度对(Ti_(5)Si_(3)+TiC+TiB)/Ti复合材料组织和力学性能的影响
17
作者 崔凯强 姜中涛 +1 位作者 敬小龙 韩威 《材料科学与工艺》 CAS CSCD 北大核心 2024年第2期89-96,共8页
为了获得性能优异的钛基复合材料和解决单一增强相对性能提升有限等问题,以Ti粉、SiC粉、TiB_(2)粉、C粉为原料,采用粉末冶金法,在不同烧结温度下原位自生制备了(Ti_(5)Si_(3)+TiC+TiB)/Ti复合材料。通过XRD、SEM、万能试验机等设备表... 为了获得性能优异的钛基复合材料和解决单一增强相对性能提升有限等问题,以Ti粉、SiC粉、TiB_(2)粉、C粉为原料,采用粉末冶金法,在不同烧结温度下原位自生制备了(Ti_(5)Si_(3)+TiC+TiB)/Ti复合材料。通过XRD、SEM、万能试验机等设备表征了复合材料的微观组织和力学性能。结果表明:随烧结温度的升高,复合材料的致密度提高,平均晶粒尺寸逐渐增大;烧结温度的升高使增强相数量增加的同时减少了较低烧结温度下的团聚现象。复合材料的洛氏硬度、屈服强度、抗拉强度随烧结温度的升高先增大后减小,断裂应变下降不显著。在1300℃下,(Ti_(5)Si_(3)+TiC+TiB)/Ti具有最佳的综合力学性能,烧结态试样的抗压强度达到最高2435 MPa,屈服强度1649 MPa,洛氏硬度49.1HRC,断裂应变28.7%。分析可知,微米尺寸的TiC、TiB和亚微米尺寸的Ti_(5)Si_(3)增强相的协同作用在显著提高复合材料强度的同时也保持了一定的塑性。(Ti_(5)Si_(3)+TiC+TiB)/Ti复合材料的增强方式以细晶强化、弥散强化和载荷传递强化为主。 展开更多
关键词 钛基复合材料 Ti_(5)Si_(3)&tic&TiB 烧结温度 显微组织 力学性能
下载PDF
Self-propagating High-temperature Synthesis, Microstructure and Mechanical Properties of TiC-TiB_2-Cu Composites 被引量:5
18
作者 Chuncheng ZHU Xinghong ZHANG +1 位作者 Xiaodong HE Qiang XU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第1期78-82,共5页
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi... TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct. 展开更多
关键词 compositE TiB2-tic-Cu Self-propagating high-temperature synthesis (SHS) Cu content
下载PDF
Fabrication of FeAl/TiC composites through reactive hot pressing 被引量:1
19
作者 刘峰晓 刘咏 +2 位作者 黄伯云 贺跃辉 周科朝 《Journal of Central South University of Technology》 2004年第4期343-347,共5页
FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to ... FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to 50%(mole fraction). The effects of these compositional changes on the densification process and mechanical properties were studied. The results show that with the increase of TiC content, densities of the composites decrease due to insufficient particle rearrangement aided by (dissolutionreprecipitation) reaction during hot pressing. Closely related with their porosities and defect amount, the hardness and bend strength of the composites show peak values, attaining the highest values with TiC content being 70% and 60%, respectively. Increasing the aluminum content is beneficial to the densification process. But the hardness and bend strength of the composites are reduced to some extent due to the formation of excessive oxides and thermal vacancies. 展开更多
关键词 FeAl/tic composite densification process mechanical property reactive hot pressing
下载PDF
电弧增材制造纳米TiC颗粒增强铝基复合材料组织与性能研究
20
作者 吕奇钊 周祥曼 +3 位作者 罗彬 李波 吴海华 张海鸥 《航空制造技术》 CSCD 北大核心 2024年第10期115-121,130,共8页
在金属材料中引入第二相粒子是提高金属材料力学性能的重要手段之一。本文提出一种Al6061铝箔包裹TiC和Al6061的混合粉末形成一种特殊填料焊丝的TiC/Al6061复合材料电弧增材制造的新方法,并分别研究质量分数为1%、2%和3%的TiC颗粒对制... 在金属材料中引入第二相粒子是提高金属材料力学性能的重要手段之一。本文提出一种Al6061铝箔包裹TiC和Al6061的混合粉末形成一种特殊填料焊丝的TiC/Al6061复合材料电弧增材制造的新方法,并分别研究质量分数为1%、2%和3%的TiC颗粒对制备的铝基复合材料组织与性能的影响。结果表明,TiC质量分数为3%的复合材料与基体材料相比,试样的平均晶粒尺寸由45.5μm减小到25.3μm,细化了44.4%;抗拉强度和屈服强度由148.5 MPa和118.0 MPa提升到178.1 MPa和157.3 MPa,分别提升了19.9%和33.3%;平均显微硬度由50.5HV增加至65.2HV,提升了29.1%。理论结合及试验分析表明,TiC的载荷传递强化和晶粒细化以及Orowan强化机制,是材料力学性能提高的主要原因。 展开更多
关键词 电弧增材制造 铝基复合材料(AMCs) tic 微观组织 力学性能
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部