期刊文献+
共找到5,226篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of laser parameters on the microstructures and surface properties in laser surface modification of biomedical magnesium alloys
1
作者 Chee Ying Tan Cuie Wen Hua Qian Ang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期72-97,共26页
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi... Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique. 展开更多
关键词 BIOCOMPATIBILITY BIODEGRADABILITY Corrosion Implant applications Laser surface modification Magnesium alloys
下载PDF
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
2
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys Friction stir processing Metal matrix composites LIGHTWEIGHT surface modification
下载PDF
Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet
3
作者 Can Kang Shifeng Yan +2 位作者 Haixia Liu Jie Chen Kejin Ding 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2431-2442,共12页
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa... The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation. 展开更多
关键词 Cavitation erosion Al-Mg alloy liquid temperature mass loss surface morphology MICROHARDNESS
下载PDF
Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour
4
作者 Lizi Cheng Xiaofeng Zhang +7 位作者 Jiacheng Xu Temitope Olumide Olugbade Gan Li Dongdong Dong Fucong Lyu Haojie Kong Mengke Huo Jian Lu 《Nano Materials Science》 EI CAS CSCD 2024年第5期587-595,共9页
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie... Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials. 展开更多
关键词 Architected materials Selective laser melting surface mechanical attrition treatment Structural analysis Ductile alloy
下载PDF
Laser processing effects on Ti−45Nb alloy surface,corrosive and biocompatible properties
5
作者 I.CVIJOVIĆ-ALAGIĆ S.LAKETIĆ +5 位作者 M.MOMČILOVIĆ J.CIGANOVIĆ Đ.VELJOVIĆ J.BAJAT V.KOJIĆ M.RAKIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2533-2551,共19页
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme... The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment. 展开更多
关键词 Ti−45Nb alloy laser surface scanning electrochemical properties BIOCOMPATIBILITY cell morphology
下载PDF
A novel approach of jet polishing for interior surface of small-grooved components using three developed setups
6
作者 Qinming Gu Zhenyu Zhang +6 位作者 Hongxiu Zhou Jiaxin Yu Dong Wang Junyuan Feng Chunjing Shi Jianjun Yang Junfeng Qi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期428-447,共20页
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw... It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken. 展开更多
关键词 abrasive air jet polishing multi-phase jet polishing interior curved surface small-grooved component aluminum alloy
下载PDF
Influence of Production Sequence of Aluminum Alloy Hot Rolling on Strip Surface Quality
7
作者 Hui Song Weixuan Jiang 《Frontiers of Metallurgical Industry》 2024年第1期12-14,共3页
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc... With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated. 展开更多
关键词 hot rolling production sequence surface quality aluminum alloy chromate treatment
下载PDF
Effect of surface diffusion alloying on erosion wear property of ZM5 magnesium alloy 被引量:3
8
作者 马幼平 李秀兰 +1 位作者 杨蕾 贺西鹏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期323-328,共6页
Specimens of ZM5 magnesium alloy were dipped into the mixed powder of Al and Zn at (390±5) ℃ for 8 h in argon gas protective environment and subjected to surface diffusion alloying processing (SDAP). The ero... Specimens of ZM5 magnesium alloy were dipped into the mixed powder of Al and Zn at (390±5) ℃ for 8 h in argon gas protective environment and subjected to surface diffusion alloying processing (SDAP). The erosion wear behaviors of ZM5 magnesium alloy before and after SDAP were investigated in two different erosion wear environments: oil and quartz environment; tap water and quartz environment. The surfaces of erosion wear specimens exhibited cutting scratch grooves in the oil and quartz environment. Corrosive attack was weak and cutting wear mechanism was responsible for the mass loss. When the erosion wear medium was changed to tap water and quartz environment, corrosion pits and cracks were obviously observed after erosion wear test. The corrosion from tap water and the scour from quartz intensified mass losses. Compared with the untreated specimens, the application of SDAP improved the erosion wear resistance in the same environment. 展开更多
关键词 magnesium alloy ZM5 alloy EROSION WEAR surface diffusion alloying
下载PDF
Self-repairing functionality and corrosion resistance of in-situ Mg-Al LDH film on Al-alloyed AZ31 surface 被引量:2
9
作者 Yi-Xing Zhu Guang-Ling Song Peng-Peng Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1567-1579,共13页
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s... A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys. 展开更多
关键词 LDH film surface alloying Corrosion resistance SELF-REPAIRING
下载PDF
A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods 被引量:2
10
作者 Subrat Kumar Baral Manjusha M.Thawre +1 位作者 B.Ratna Sunil Ravikumar Dumpala 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期776-800,共25页
Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,wh... Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys. 展开更多
关键词 ZE41 magnesium alloy Bulk deformation surface modification Mechanical properties WEAR Corrosion
下载PDF
Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing:A review 被引量:2
11
作者 Hamed Mirzadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1278-1296,共19页
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si... This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs). 展开更多
关键词 surface composites magnesium alloys friction stir processing severe plastic deformation thermomechanical processing
下载PDF
Recent advances in surface endothelialization of the magnesium alloy stent materials 被引量:1
12
作者 Changjiang Pan Xuhui Liu +7 位作者 Qingxiang Hong Jie Chen Yuxin Cheng Qiuyang Zhang Lingjie Meng Juan Dai Zhongmei Yang Lingren Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期48-77,共30页
Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor b... Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor biocompatibility are still the bottlenecks of clinical applications for the cardiovascular stents.In particular,how to induce the repair and regeneration of the vascular endothelial with normal physiological functions on the surface of the magnesium alloy stent materials represents the key to its clinical application in the field of cardiovascular stents.It has been believed that it is an ideal way to completely solve the postoperative complications through constructing the multifunctional anti-corrosive bioactive coating on the magnesium alloy surface to induce the formation of vascular endothelium with normal physiological functions.However,how to construct a corrosion-resistant multifunctional bioactive coating with the good endothelial regeneration abilities on the magnesium alloy surface still faces a great challenge.This paper mainly focused on highlighting and summarizing the recent advances in the surface endothelialization of the magnesium alloy materials for the vascular stent,including the bio-inert coating,in-situ immobilization of bioactive molecules on the surface,polymer coating loaded with bioactive factors,novel multifunctional polymer coating,bioactive micropatterns,bioactive layer with glycocalyx-like structure,NO-releasing coating and bioactive sol-gel coating.The advantages and disadvantages of these strategies were discussed and analyzed.Finally,in the senses of future development and clinical application,this paper analyzed and summarized the development direction and prospect of surface endothelialization of the magnesium alloy vascular stents.It is anticipated that this review can give the new cues to the surface endothelialization of the cardiovascular magnesium alloy stents and promote future advancements in this field. 展开更多
关键词 Magnesium alloy STENT ENDOTHELIALIZATION surface coating surface modification
下载PDF
Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening 被引量:1
13
作者 金玉花 陈永昇 +2 位作者 马悦铭 王希靖 郭廷彪 《China Welding》 CAS 2023年第1期18-26,共9页
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa... The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications. 展开更多
关键词 7050 aluminum alloy surface compound modification fatigue crack propagation weld nugget zone
下载PDF
DOUBLE GLOW PLASMA SURFACE ALLOYING OF Ti6A14V AND TiAl 被引量:4
14
作者 Z.Xu, L. Qin, B. Tang and Z. Y. He Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, China X.S. Xie and C.L. Zheng School of Materials Science and Engineering, University of Science and Technology Beijing, Beiji 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第2期172-176,共5页
In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied ... In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly. 展开更多
关键词 High temperature effects Oxidation resistance surface treatment Titanium alloys Wear resistance
下载PDF
Cooperative effect of surface alloying and laser texturing on tribological performance of lubricated surfaces 被引量:5
15
作者 万轶 熊党生 李建亮 《Journal of Central South University》 SCIE EI CAS 2010年第5期906-910,共5页
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl... The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricated surface
下载PDF
Tribological Properties of Dimpled Surface Alloying Layer on Carbon Steel 被引量:2
16
作者 万轶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期218-222,共5页
The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and... The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricating state
下载PDF
Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC 被引量:3
17
作者 Chen Dongfeng Dong Xuanpu +2 位作者 Fan Zitian Xu Qian Zhang Xiong 《China Foundry》 SCIE CAS 2010年第1期13-18,共6页
AZ91D surface alloying was investigated through evaporative pattern casting (EPC) technology. Aluminum powder (0.074 to 0.104 mm) was used as the alloying element in the experiment. An alloying coating with excell... AZ91D surface alloying was investigated through evaporative pattern casting (EPC) technology. Aluminum powder (0.074 to 0.104 mm) was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX) analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of/3-MglTAI12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen. 展开更多
关键词 EPC magnesium alloy surface alloying corrosion rate
下载PDF
Effect of multifunction cavitation using phosphoric acid on fatigue and surface properties of AZ31 magnesium alloy
18
作者 Shunta Matsuoka Fumihiro Kato +2 位作者 Toshihiko Yoshimura Masataka Ijiri Shoichi Kikuchi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1996-2005,共10页
Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to fo... Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties. 展开更多
关键词 Magnesium alloy Multifunction cavitation surface modification FATIGUE Residual stress
下载PDF
Effects of surface roughness on bending properties of rolled AZ31 alloy
19
作者 Gyo Myeong Lee Jong Un Lee Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1224-1235,共12页
This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were pe... This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were performed on one sample without polishing lines(SS sample)and two samples with polishing lines—one in which the polishing lines were parallel to the rolling direction(RS-RD sample)and the other in which they were parallel to the transverse direction(RS-TD sample).In all three samples,macrocracks were formed in the width direction on the outer surface,where tensile stress was predominantly generated in the longitudinal direction.However,the macrocracks formed in the SS sample were curved because of the merging of uniformly formed fine microcracks,whereas those formed in the RS-TD sample were linear owing to the formation of relatively coarse microcracks along the polishing lines.The bendability of the samples was in the order of SS>RS-RD>RS-TD,and their limiting bending depths were 4.8,4.6,and 4.4 mm,respectively.In the presence of mechanical-polishing-induced surface roughness,polishing lines perpendicular to the direction of the major stress(i.e.,tensile stress along the longitudinal direction)resulted in a greater degree of stress concentration on the outer surface of the bending specimen.This higher stress concentration promoted the formation of undesirable{10–11}contraction and{10–11}–{10–12}double twins—which typically act as crack initiation sites—and thereby facilitated crack generation and propagation.Consequently,the surface roughness caused premature fracture during bending deformation,which,in turn,caused deterioration of the bendability of the rolled Mg alloy. 展开更多
关键词 AZ31 alloy BENDING surface roughness Stress concentration CRACK
下载PDF
Evaluation of Surface Roughness of Aluminum Alloy in Burnishing Process Based on Chaos Theory
20
作者 Zhipeng Yuan Zhenyu Zhou +3 位作者 Zhiguo Jiang Zeyu Zhao Cong Ding Zhongyu Piao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期90-103,共14页
Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory ... Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory was employed to investigate the nonlinear features of the burnishing system.The experimental results show that the power spectrum is broadband and continuous,and the Lyapunov exponentλis positive,proving that burnishing has chaotic characteristics.The chaotic characteristic parameter,the correlation dimension D,is sensitive to the time behavior of the system and is used to establish the corresponding relationship with the surface roughness.The correlation dimension was the largest,when the surface roughness was the smallest.Furthermore,when the correlation dimension curve decreases,the roughness curve increases.The correlation dimension and surface roughness exhibit opposite variation trends.The higher the correlation dimension,the lower the surface roughness.The surface roughness of the aluminum alloy can be characterized online by calculating the correlation dimension during burnishing. 展开更多
关键词 Aluminum alloy burnishing Power spectrum Correlation dimension Lyapunov exponent surface roughness
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部