There are two factors,source composition and magmatic differentiation,potentially controlling W-Sn mineralization.Which one is more important is widely debated and may need to be determined for each individual deposit...There are two factors,source composition and magmatic differentiation,potentially controlling W-Sn mineralization.Which one is more important is widely debated and may need to be determined for each individual deposit.The Xitian granite batholith located in South China is a natural laboratory for investigating the above problem.It consists essentially of two separate components,formed in the Triassic at ca.226 Ma and Jurassic at ca.152 Ma,respectively.The Triassic and Jurassic rocks are both composed of porphyritic and fine-grained phases.The latter resulted from highlydifferentiated porphyritic ones but they have similar textural characteristics and mineral assemblages,indicating that they reached a similar degree of crystal fractionation.Although both fine-grained phases are highly differentiated with elevated rare metal contents,economic W–Sn mineralization is rare in the Triassic granitoids and this can be attributed to less fertile source materials than their Jurassic counterparts,with a slightly more enriched isotopic signature and whole-rockεNd(226 Ma)of−10.4 to−9.2(2σ=0.2)compared withεNd(152 Ma)of−9.2 to−8.2(2σ=0.2)for the Jurassic rocks.The initial W-Sn enrichment was derived from the metasedimentary rocks and strongly enhanced by reworking of the continental crust,culminating in the Jurassic.展开更多
Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma ma...Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma mass spectroscopy) U-Pb, molybdenite Re-Os isochron and muscovite Ar-Ar methods in southern Jiangxi Province and its adjacent areas. Based on these, the purpose of this paper is to study the petrogenetic and metallogenic ages and their time gap for different genetic types of W-Sn deposits, and thus to research their numerous episodes, zonal arrangement and their geodynamic background. The result shows that the large-scale W-Sn mineralization in southern Jiangxi Province occurred in the middle to late Jurassic (170-150 Ma), the skarn W-Sn-polymetallic deposits formed much earlier (170-161 Ma), and all of the wolframite-quartz vein type, greisen type, altered granite type and fractured zone type tungsten deposits formed in the late Jurassic (160-150 Ma). In one ore field or ore district, greisen type tungsten deposits formed earlier than quartz vein type ones hosted in the endoor exo-contact zone; and quartz vein type hosted in the endocontact zone formed earlier than that of exocontact zone. There is no significant time difference between tungstentin mineralization and its intimately associated parent granite emplacement (1-6 Ma). They all formed in the same rock-forming and ore-forming system and under the same geodynamic setting. Regionally, rock-forming and ore-forming processes of the W-Sn deposits in the Nanling region (include southern Jiangxi Province, southern Hunan Province, northern Guangdong Province and eastern Guangxi Zhuang Autonomous Region) exhibit numerous episodes. The mineralization in the Nanling region mainly occurred at (240-210) Ma, (170-150) Ma and (130-90) Ma. The tungsten-tin deposits in this region are centered by the largest scale in southern Jiangxi Province and southern Hunan Province, and become small in the east, west, south and north directions. This displays a zonal arrangement and temporal and spatial distribution regularity. Integrated with the latest research results, it is concluded that the W-Sn mineralization in southern Jiangxi Province and its adjacent areas corresponds to the second large-scale mineralization in South China. The Indosinian W-Sn mineralization formed under the extensional tectonic regime between collisional compressional stages, while the Yanshanian large-scale petrogenetic and metallogenic processes occurred in the Jurassic intraplate extensional geodynamic setting of lithosphere extension.展开更多
The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report c...The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.展开更多
1 Introduction Yangchun basin locates in the west of Guangdong Province,where more than 50 deposits have been discovered to date,including Xishan W-Sn deposit,Shilv Cu-Mo deposits,Tiantang Cu-Pb-Zn polymetallic
Piaoac granites exposed in the Cao Bang region, northern Vietnam, are S-type granite, which are associated with W-Sn-Mo-Be-F mineralization. Zircon U-Pb ages, major and trace elements, mineral chemical and Hf isotopic...Piaoac granites exposed in the Cao Bang region, northern Vietnam, are S-type granite, which are associated with W-Sn-Mo-Be-F mineralization. Zircon U-Pb ages, major and trace elements, mineral chemical and Hf isotopic compositions of the W-Sn-bearing granites from the Piaoac District have been investigated in detail. LA-ICP-MS U-Pb dating of zircon grains from these granites yielded ages of 82.5±2.3 and 82±1.8 Ma, representing an episode of Late Cretaceous magmatic event. These granites are characterized by high peraluminous and have typical S-type geochemical signatures with high SiO_2(72.37 wt.%–73.07 wt.%), high A/CNK values(1.61–1.65) and Al_2O_3(14.4 wt.%–15 wt.%). They are enriched in Rb, U, K, Th, Ta and Pb and display pronounced negative Ba, Sr, Nb, Ti and Eu(Eu/Eu*=0.19–0.24) anomalies. The high degree of fractional crystallization is characterized by low Rb, Sr, Ba and Eu concentrations with high ratios of La/Sm and Eu/Eu*. Zircon grains show εHf(t) values from-9.69 to-0.9 and the corresponding TDM2 range from 1.2 to 1.7 Ga, indicating that these granites could be derived from the Proterozoic basement rocks with minor input from mantle-derived magmas. The calculation of Fe^(3+) and Fe^(2+) of biotites indicates a low oxygen fugacity condition(log fO_2 ranging from 10-17 to 10-18 bars, below MH), which is favorable for the W-Sn mineralization. Tungsten and tin have been enriched in granitic magmas through fractionation, and low oxygen fugacity conditions have promoted the accumulation and transportation of W-Sn in the hydrothermal fluids, leading to deposition of mineral phases. The geochemical data suggest that Piaoac granites formed in an extensional setting related with the Late Cretaceous magmatism occurring large-scale lithospheric extensional in South China Block.展开更多
The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Car...The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Carboniferous metasedimentary rocks of Mergui Series. According to mineral assemblages and crosscutting relationships, four ore-forming stages are recognized:(1) silicate-oxide stage;(2) quartz-sulfide stage;(3) barren quartz vein stage;(4) supergene stage. Five molybdenite samples from the deposit yield Re-Os model ages ranging from 67.8±1.6 to 69.2±1.6 Ma(weighted mean age of 68.7±1.2 Ma), and a well-defined isochron age of 68.4±2.5 Ma(MSWD=0.18, 2σ). This Re-Os age is consistent with the previously published zircon U-Pb age of the Hermyingyi monzogranite(70.0±0.4 Ma)(MSWD=0.9, 2σ) within errors, which indicates a genetic link between the monzogranitic magmatism and W-Sn mineralization. The new high-precision geochronological data reveal that the granitic magmatism and associated W-Sn mineralization in southern Myanmar took place during the Late Cretaceous(70–68 Ma). The extremely low Re contents(22.9 ppb to 299 ppb) in molybdenite, coupled with sulfide δ^(34)S values in the range of +1.9‰ to +5.6‰ suggest that ore-forming metals were predominately sourced from the crustal-derived granitic magma.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.92162210,42172096 and 41773028).
文摘There are two factors,source composition and magmatic differentiation,potentially controlling W-Sn mineralization.Which one is more important is widely debated and may need to be determined for each individual deposit.The Xitian granite batholith located in South China is a natural laboratory for investigating the above problem.It consists essentially of two separate components,formed in the Triassic at ca.226 Ma and Jurassic at ca.152 Ma,respectively.The Triassic and Jurassic rocks are both composed of porphyritic and fine-grained phases.The latter resulted from highlydifferentiated porphyritic ones but they have similar textural characteristics and mineral assemblages,indicating that they reached a similar degree of crystal fractionation.Although both fine-grained phases are highly differentiated with elevated rare metal contents,economic W–Sn mineralization is rare in the Triassic granitoids and this can be attributed to less fertile source materials than their Jurassic counterparts,with a slightly more enriched isotopic signature and whole-rockεNd(226 Ma)of−10.4 to−9.2(2σ=0.2)compared withεNd(152 Ma)of−9.2 to−8.2(2σ=0.2)for the Jurassic rocks.The initial W-Sn enrichment was derived from the metasedimentary rocks and strongly enhanced by reworking of the continental crust,culminating in the Jurassic.
基金financially supported by the National Key Basic Research Program (Grant2012CB416704) from the Ministry of Science and Technology, Chinagrant No. 40772063 from the National Natural Science Foundation of China+1 种基金the Program of Excellent Young Scientists from the Ministry of Land and Resources (200809)Geological Survey Program Grant 1212010561603-2 from the China Geological Survey
文摘Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma mass spectroscopy) U-Pb, molybdenite Re-Os isochron and muscovite Ar-Ar methods in southern Jiangxi Province and its adjacent areas. Based on these, the purpose of this paper is to study the petrogenetic and metallogenic ages and their time gap for different genetic types of W-Sn deposits, and thus to research their numerous episodes, zonal arrangement and their geodynamic background. The result shows that the large-scale W-Sn mineralization in southern Jiangxi Province occurred in the middle to late Jurassic (170-150 Ma), the skarn W-Sn-polymetallic deposits formed much earlier (170-161 Ma), and all of the wolframite-quartz vein type, greisen type, altered granite type and fractured zone type tungsten deposits formed in the late Jurassic (160-150 Ma). In one ore field or ore district, greisen type tungsten deposits formed earlier than quartz vein type ones hosted in the endoor exo-contact zone; and quartz vein type hosted in the endocontact zone formed earlier than that of exocontact zone. There is no significant time difference between tungstentin mineralization and its intimately associated parent granite emplacement (1-6 Ma). They all formed in the same rock-forming and ore-forming system and under the same geodynamic setting. Regionally, rock-forming and ore-forming processes of the W-Sn deposits in the Nanling region (include southern Jiangxi Province, southern Hunan Province, northern Guangdong Province and eastern Guangxi Zhuang Autonomous Region) exhibit numerous episodes. The mineralization in the Nanling region mainly occurred at (240-210) Ma, (170-150) Ma and (130-90) Ma. The tungsten-tin deposits in this region are centered by the largest scale in southern Jiangxi Province and southern Hunan Province, and become small in the east, west, south and north directions. This displays a zonal arrangement and temporal and spatial distribution regularity. Integrated with the latest research results, it is concluded that the W-Sn mineralization in southern Jiangxi Province and its adjacent areas corresponds to the second large-scale mineralization in South China. The Indosinian W-Sn mineralization formed under the extensional tectonic regime between collisional compressional stages, while the Yanshanian large-scale petrogenetic and metallogenic processes occurred in the Jurassic intraplate extensional geodynamic setting of lithosphere extension.
基金financially supported by the National Basic Research Program of China (No. 2014CB440800)China Geological Survey Bureau (No. 1212011140056)
文摘The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.
基金funded by the projects of the China Geological Survey [grant numbers 12120114005701 and No.DD20160029]
文摘1 Introduction Yangchun basin locates in the west of Guangdong Province,where more than 50 deposits have been discovered to date,including Xishan W-Sn deposit,Shilv Cu-Mo deposits,Tiantang Cu-Pb-Zn polymetallic
基金supported by the National Key R & D Program of China (No. 2016YFC0600404)the National Natural Science Foundation of China (Nos. 41673040 and 41611540339)
文摘Piaoac granites exposed in the Cao Bang region, northern Vietnam, are S-type granite, which are associated with W-Sn-Mo-Be-F mineralization. Zircon U-Pb ages, major and trace elements, mineral chemical and Hf isotopic compositions of the W-Sn-bearing granites from the Piaoac District have been investigated in detail. LA-ICP-MS U-Pb dating of zircon grains from these granites yielded ages of 82.5±2.3 and 82±1.8 Ma, representing an episode of Late Cretaceous magmatic event. These granites are characterized by high peraluminous and have typical S-type geochemical signatures with high SiO_2(72.37 wt.%–73.07 wt.%), high A/CNK values(1.61–1.65) and Al_2O_3(14.4 wt.%–15 wt.%). They are enriched in Rb, U, K, Th, Ta and Pb and display pronounced negative Ba, Sr, Nb, Ti and Eu(Eu/Eu*=0.19–0.24) anomalies. The high degree of fractional crystallization is characterized by low Rb, Sr, Ba and Eu concentrations with high ratios of La/Sm and Eu/Eu*. Zircon grains show εHf(t) values from-9.69 to-0.9 and the corresponding TDM2 range from 1.2 to 1.7 Ga, indicating that these granites could be derived from the Proterozoic basement rocks with minor input from mantle-derived magmas. The calculation of Fe^(3+) and Fe^(2+) of biotites indicates a low oxygen fugacity condition(log fO_2 ranging from 10-17 to 10-18 bars, below MH), which is favorable for the W-Sn mineralization. Tungsten and tin have been enriched in granitic magmas through fractionation, and low oxygen fugacity conditions have promoted the accumulation and transportation of W-Sn in the hydrothermal fluids, leading to deposition of mineral phases. The geochemical data suggest that Piaoac granites formed in an extensional setting related with the Late Cretaceous magmatism occurring large-scale lithospheric extensional in South China Block.
基金financially supported by the National Key R&D Program of China (No. 2017YFC0602405)the National Natural Science Foundation of China (Nos. 41503043, 91755208)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR03-2)
文摘The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Carboniferous metasedimentary rocks of Mergui Series. According to mineral assemblages and crosscutting relationships, four ore-forming stages are recognized:(1) silicate-oxide stage;(2) quartz-sulfide stage;(3) barren quartz vein stage;(4) supergene stage. Five molybdenite samples from the deposit yield Re-Os model ages ranging from 67.8±1.6 to 69.2±1.6 Ma(weighted mean age of 68.7±1.2 Ma), and a well-defined isochron age of 68.4±2.5 Ma(MSWD=0.18, 2σ). This Re-Os age is consistent with the previously published zircon U-Pb age of the Hermyingyi monzogranite(70.0±0.4 Ma)(MSWD=0.9, 2σ) within errors, which indicates a genetic link between the monzogranitic magmatism and W-Sn mineralization. The new high-precision geochronological data reveal that the granitic magmatism and associated W-Sn mineralization in southern Myanmar took place during the Late Cretaceous(70–68 Ma). The extremely low Re contents(22.9 ppb to 299 ppb) in molybdenite, coupled with sulfide δ^(34)S values in the range of +1.9‰ to +5.6‰ suggest that ore-forming metals were predominately sourced from the crustal-derived granitic magma.