将基于最优插值(OI)的同化并行模块植入全谱空间的第三代海浪模式 WAVEWATCH III ver-sion3.14,建立数据同化的海浪模式预报系统,并通过实际的预报个例对同化系统进行检验。个例实验是以5°S以北的印度洋海域为目标计算区域,海面...将基于最优插值(OI)的同化并行模块植入全谱空间的第三代海浪模式 WAVEWATCH III ver-sion3.14,建立数据同化的海浪模式预报系统,并通过实际的预报个例对同化系统进行检验。个例实验是以5°S以北的印度洋海域为目标计算区域,海面风场强迫采用业务单位的中尺度天气预报模式WRF (weather research and forecast)提供的逐时海面风场预报产品。模式积分过程中连续同化2010年12月15日、16日和17日过境北印度洋的Jason-2卫星高度计沿轨有效波高(SWH)数据(需要指出的是,每次同化得到新的SWH分析场后需重构相应的二维海浪谱用于谱模式)。SWH同化分析值和无同化的对照组分别与高度计沿轨观测数据比较发现,就日平均统计来看,同化较无同化使SWH分析值的均方根误差减小约25%-50%。以 SWH同化分析场作为初始场的预报表明,同化对预报影响的时效性可延长至48-60 h。本研究目的是通过将高度计测量的SWH数据同化到海浪模式进一步提升海浪数值预报的准确度。展开更多
Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this ...Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.展开更多
Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave inte...Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.展开更多
Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Compari...Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.展开更多
文摘将基于最优插值(OI)的同化并行模块植入全谱空间的第三代海浪模式 WAVEWATCH III ver-sion3.14,建立数据同化的海浪模式预报系统,并通过实际的预报个例对同化系统进行检验。个例实验是以5°S以北的印度洋海域为目标计算区域,海面风场强迫采用业务单位的中尺度天气预报模式WRF (weather research and forecast)提供的逐时海面风场预报产品。模式积分过程中连续同化2010年12月15日、16日和17日过境北印度洋的Jason-2卫星高度计沿轨有效波高(SWH)数据(需要指出的是,每次同化得到新的SWH分析场后需重构相应的二维海浪谱用于谱模式)。SWH同化分析值和无同化的对照组分别与高度计沿轨观测数据比较发现,就日平均统计来看,同化较无同化使SWH分析值的均方根误差减小约25%-50%。以 SWH同化分析场作为初始场的预报表明,同化对预报影响的时效性可延长至48-60 h。本研究目的是通过将高度计测量的SWH数据同化到海浪模式进一步提升海浪数值预报的准确度。
基金The National High Technology Research and Development Program(863 Program) of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.
基金The National Natural Science Foundation of China under contract No. 40706008the Open Research Program of the Key Laboratory of Chinese Acadeing of Sciences for Tropical Marine Environmental Dynamics under contract No. LED0606+1 种基金the Shandong Province Natural Science Foundation of China under contract No. Z2008E02the National High Technology Research and Development Program ("863" Program) of China under contract No. 2008AA09A402
文摘Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.
基金Supported by the South China Sea Institute of Oceanology,Chinese Academy of Sciences
文摘Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.