By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we...By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.展开更多
Two physical interpretations of chirp transform related to Fresnel diffraction and Wigner distribution function are given. The chirp transform can be regarded as a Fresnel diffraction observed on a spherical tangent t...Two physical interpretations of chirp transform related to Fresnel diffraction and Wigner distribution function are given. The chirp transform can be regarded as a Fresnel diffraction observed on a spherical tangent to the diffraction plane, or a rotation and stretching transformation of the Wigner distribution function space. A general fast algorithm for the numerical calculation of chirp transform is developed by employing two fast Fourier transform algorithms. The algorithm, by which a good evaluation can be achieved, unifies the calculations of Fresnel diffraction, arbitrary fractional- order Fourier transforms and other scalar diffraction systems. The algorithm is used to calculate the Fourier transform of a Gaussian function and the Fourier transform, the Fresnel transform, the Fractional-order Fourier transforms of a rectangle function to evaluate the performance of this algorithm. The calculated results are in good agreement with the analytical results, both in the amplitude and phase.展开更多
An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simp...An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simplest case of the SLG beams, where there are four mutually orthogonal SLG beams, namely SLG00, SLG01, SLG10, and SLGll beams. The SLG00 beam is just the Lorentz-Gauss beam. Based on the Collins integral formula and the Hermite-Gaussian expansion of a Lorentz function, an analytical expression for the Wigner distribution function (WDF) of an SLG11 beam through a paraxial ABCD optical system is derived. The properties of the WDF of an SLG11 beam propagating in free space are demonstrated. The normalized WDFs of an SLG11 beam at the different spatial points are depicted in several observation planes. The influence of the beam parameter on the WDF of an SLGI 1 beam in free space is analyzed at different propagation distances. The second-order moments of the WDF of an SLG11 beam in free space are also examined. This research reveals the propagation properties of an SLGll beam from another perspective. The WDFs of SLG01 and SLG10 beams can be easily obtained by using the WDFs of Lorentz-Gauss beam and the SLG11 beam.展开更多
This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the tec...This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the technique of integration within an ordered product of operator, it investigates the orthonormality and completeness relation of the FDTCS. Based on the thermal Wigner operator in the thermal entangled state representation, the Wigner function of the FDTCS is obtained. The nonclassical properties of the FDTCS are discussed in terms of the negativity of its Wigner function.展开更多
In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of ...In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of the squeezed one-photon state, which is quite different from one introduced by Song and Fan [Int. 3. Theor. Phys. 41 (2002) 695], is constructed. Moreover, the Wigner function and phase probability distribution of q-analogue of the squeezed one-photon state are examined.展开更多
Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), the Wigner function is presented in the form of a color path integral. The Monte Carlo calculations of the quark and gluon densities, pair ...Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), the Wigner function is presented in the form of a color path integral. The Monte Carlo calculations of the quark and gluon densities, pair correlation functions and the momentum distribution functions for strongly coupled QGP plasma in thermal equilibrium at barion chemical potential equal to zero have been carried out. Analysis of the pair correlation functions points out on arising glueballs and related gluon bound states. Comparison results between the momentum distribution functions and Maxwell-Boltzmann distributions show the significant influence of the interparticle interaction on the high energy asymptotics of the momentum distribution functions resulting in the appearance of quantum “tails”.展开更多
This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distr...This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtai...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtained. The physical meaning of the Wigner functions for the EOBSs is given by means of their marginal distributions. Moreover, the tomograms of the EOBSs are calculated by virtue of intermediate coordinate-momentum representation in quantum optics.展开更多
A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner functio...A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.展开更多
Quantum interference and exchange statistical effects can affect the momentum distribution functions making them non-Maxwellian. Such effects may be important in studies of kinetic properties of matter at low temperat...Quantum interference and exchange statistical effects can affect the momentum distribution functions making them non-Maxwellian. Such effects may be important in studies of kinetic properties of matter at low temperatures and under extreme conditions. In this work we have generalized the path integral representation for Wigner function to strongly coupled three-dimensional quantum system of particles with Boltzmann and Fermi statistics. In suggested approach the explicit expression for Wigner function was obtained in harmonic approximation and Monte Carlo method allowing numerical calculation of Wigner function, distribution functions and average quantum values has been developed. As alternative more accurate single-momentum approach and related Monte Carlo method have been developed to calculation of the distribution functions of degenerate system of interacting fermions. It allows partially overcoming the well-known sign problem for degenerate Fermi systems.展开更多
基金the Natural Science Foundation of Heze University of Shandong Province of China under Grant Nos.XY07WL01 and XY05WL01the University Experimental Technology Foundation of Shandong Province of China under Grant No.S04W138
文摘By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.
文摘Two physical interpretations of chirp transform related to Fresnel diffraction and Wigner distribution function are given. The chirp transform can be regarded as a Fresnel diffraction observed on a spherical tangent to the diffraction plane, or a rotation and stretching transformation of the Wigner distribution function space. A general fast algorithm for the numerical calculation of chirp transform is developed by employing two fast Fourier transform algorithms. The algorithm, by which a good evaluation can be achieved, unifies the calculations of Fresnel diffraction, arbitrary fractional- order Fourier transforms and other scalar diffraction systems. The algorithm is used to calculate the Fourier transform of a Gaussian function and the Fourier transform, the Fresnel transform, the Fractional-order Fourier transforms of a rectangle function to evaluate the performance of this algorithm. The calculated results are in good agreement with the analytical results, both in the amplitude and phase.
基金Project supported by the National Natural Science Foundation of China (Grant No.10974179)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y1090073)
文摘An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simplest case of the SLG beams, where there are four mutually orthogonal SLG beams, namely SLG00, SLG01, SLG10, and SLGll beams. The SLG00 beam is just the Lorentz-Gauss beam. Based on the Collins integral formula and the Hermite-Gaussian expansion of a Lorentz function, an analytical expression for the Wigner distribution function (WDF) of an SLG11 beam through a paraxial ABCD optical system is derived. The properties of the WDF of an SLG11 beam propagating in free space are demonstrated. The normalized WDFs of an SLG11 beam at the different spatial points are depicted in several observation planes. The influence of the beam parameter on the WDF of an SLGI 1 beam in free space is analyzed at different propagation distances. The second-order moments of the WDF of an SLG11 beam in free space are also examined. This research reveals the propagation properties of an SLGll beam from another perspective. The WDFs of SLG01 and SLG10 beams can be easily obtained by using the WDFs of Lorentz-Gauss beam and the SLG11 beam.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574060)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A23and ZR2010AQ027)the Shandong Province Higher Educational Science and Technology Program,China(Grant Nos.J09LA07and J10LA15).
文摘This paper constructs a new type of finite-dimensional thermal coherent states (FDTCS), which differs from the proceeding thermal coherent state in construction, as realisations of SU(2) Lie algebra. Using the technique of integration within an ordered product of operator, it investigates the orthonormality and completeness relation of the FDTCS. Based on the thermal Wigner operator in the thermal entangled state representation, the Wigner function of the FDTCS is obtained. The nonclassical properties of the FDTCS are discussed in terms of the negativity of its Wigner function.
基金National Natural Science Foundation of China under Grant No.10574060the Natural Science Foundation of Shandong Province of China under Grant No.Y2004A09
文摘In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of the squeezed one-photon state, which is quite different from one introduced by Song and Fan [Int. 3. Theor. Phys. 41 (2002) 695], is constructed. Moreover, the Wigner function and phase probability distribution of q-analogue of the squeezed one-photon state are examined.
文摘Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), the Wigner function is presented in the form of a color path integral. The Monte Carlo calculations of the quark and gluon densities, pair correlation functions and the momentum distribution functions for strongly coupled QGP plasma in thermal equilibrium at barion chemical potential equal to zero have been carried out. Analysis of the pair correlation functions points out on arising glueballs and related gluon bound states. Comparison results between the momentum distribution functions and Maxwell-Boltzmann distributions show the significant influence of the interparticle interaction on the high energy asymptotics of the momentum distribution functions resulting in the appearance of quantum “tails”.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10974039)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.
基金supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province, China (Grant No Y2008A23)
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtained. The physical meaning of the Wigner functions for the EOBSs is given by means of their marginal distributions. Moreover, the tomograms of the EOBSs are calculated by virtue of intermediate coordinate-momentum representation in quantum optics.
文摘A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
文摘Quantum interference and exchange statistical effects can affect the momentum distribution functions making them non-Maxwellian. Such effects may be important in studies of kinetic properties of matter at low temperatures and under extreme conditions. In this work we have generalized the path integral representation for Wigner function to strongly coupled three-dimensional quantum system of particles with Boltzmann and Fermi statistics. In suggested approach the explicit expression for Wigner function was obtained in harmonic approximation and Monte Carlo method allowing numerical calculation of Wigner function, distribution functions and average quantum values has been developed. As alternative more accurate single-momentum approach and related Monte Carlo method have been developed to calculation of the distribution functions of degenerate system of interacting fermions. It allows partially overcoming the well-known sign problem for degenerate Fermi systems.