以龙口市为例,利用WEAP(Water Evaluation And Planning,水资源评估和规划系统)软件建立了水资源优化配置模型。该模型把满意度函数作为水资源优化配置模型的目标函数,满意度函数包括3个子函数,即:社会效益、经济效益和环境效益。在不...以龙口市为例,利用WEAP(Water Evaluation And Planning,水资源评估和规划系统)软件建立了水资源优化配置模型。该模型把满意度函数作为水资源优化配置模型的目标函数,满意度函数包括3个子函数,即:社会效益、经济效益和环境效益。在不同的节水和经济发展速度下的5个方案进行了模拟计算,求得社会效益,经济效益以及环境效益,再通过分析3个子函数的权重,计算最终的满意度,选择最优方案。同时,为龙口市未来的水资源开发利用提供了可靠的科学依据。展开更多
以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针...以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针对各种管理措施,组成管理方案,进行效果分析,以达到流域水资源的最佳利用.展开更多
Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via...Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via its application to Hengshui Basin of Fudong Pai River. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users' behavior. Water demand management is one of the options discussed in detail. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. Within the limits of data availability, it appears that most water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not suffice during dry years. Nevertheless, the ease of use of the model and its user-friendly interfaces make it particularly useful for discussions and dialogue on water resources management among stakeholders.展开更多
Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 4...Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 41 km before joining into the upper part of Chongwe River. The Kanakatampa Stream is a tributary of the Chongwe River. It meanders from the Kanakatampa Area for approximately 52 km before discharging into the middle of the upper part of the Chongwe River. The Chongwe River Catchment which is a sub-catchment of the Zambezi Basin drew the attention of researchers and policymakers when the Chongwe River started drying up in the dry seasons causing a water crisis particularly in the downstream regions of the middle catchment. Therefore, it is important from the water resources management perspective, to assess the contribution of tributaries into the flows of the Chongwe River. Ngwerere and Kanakatampa streams are socially, economically, and environmentally important streams for the city of Lusaka and surrounding area. This study, therefore, concentrated on evaluating the flow contribution of the two streams to the Chongwe River using the Water Evaluation And Planning (WEAP) tool. The streamflow data (1970-2010) recorded at the Chongwe Great East Road Bridge gauging station were used in the WEAP embedded Parameter ESTimation (PEST) auto-calibration tool to calibrate (1970-1999) and validate (2000-2010) the model. The monthly streamflow model calibration and validation results were assessed using the correlation coefficient (CC), Coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe Coefficient of Efficiency (NSE), and Percent bias (PBIAS). The model performance results achieved were PBIAS of 1.24%, CC = 0.81, R<sup>2</sup> = 0.66 and NSE = 0.62 during the calibration period and a positive PBIAS of 2.94%, CC = 0.81, R<sup>2</sup> = 0.67 and NSE = 0.62 during the validation period. The median of the flows (Q<sub>50</sub>) was obtained from the historical flow duration curves (FDCs) generated in averaged intervals of 10-year from 1970 to 2019. The results showed that on average, the Ngwerere and Kanakatampa Streams contribute 52.8% and 29.6% respectively, to the flow of the Chongwe River in the upper and middle Catchment. The results also showed that the contribution of the Ngwerere and Kanakatampa Streams to the Chongwe River discharge has been reducing historically at a rate of 0.65% per decade and 1.35% per decade respectively over a period of 50 years (1970-2019). Suggestions for sustainable management of the tributaries such as the Ngwerere and Kanakatampa Streams were provided in this study.展开更多
Climate change continues to pose a threat to the sustainability of water resources while, water need is increasing. In spite of the efforts made by the state authorities to build water infrastructure, a large majority...Climate change continues to pose a threat to the sustainability of water resources while, water need is increasing. In spite of the efforts made by the state authorities to build water infrastructure, a large majority of the population is not having access to drinking water. In this study, Water Evaluation and Planning (WEAP) model was used to model the current situation of water supply and demands, to create scenarios for future water demands and supply. The results show that, in contrast to the livestock sector, which has a zero DNS, huge deficits are observed in reference scenario. These unsatisfied demands (DNS) are dominated by deficits in rice irrigation. The analysis of the evolution of demand according to the growth scenarios has shown that the deficits already observed in the reference scenario will reach 100.45 × 10<sup>6</sup> m<sup>3</sup> in 2040. To mitigate the effects of such deficits, water management optimization measures have been proposed. Strengthening the water supply to urban centers from the creation of dams could considerably reduce the observed deficits. These results are an important decision support tool for sustainable water resource management in the Lobo watershed. However, these strategies to improve access to water depend on the government’s political will on water and economic opportunities.展开更多
Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure o...Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure on water resources. This study assesses the hydrological components and ascertains the available water resources and unmet demand in the sub-catchments using the Water Evaluation And Planning (WEAP) Model and hydrometeorological data collected between 1951 and 2018. The model was calibrated and validated on 1971-1981 and 2008-2018 data respectively. The results reveal that the sub-catchments have transitioned from positive to negative water balance with -164.295 Mm<sup>3</sup>/year for Mutama-Bweengwa, -19.021 Mm<sup>3</sup>/year for Kasaka and -86.368 Mm<sup>3</sup>/year for Magoye. Evaporation was 1815.259 Mm<sup>3</sup>/year for Mutama-Bweengwa, 1162.655 Mm<sup>3</sup>/year for Kasaka and 1505.664 Mm<sup>3</sup>/year for Magoye. The demand for water has been increasing over time for various purposes such as irrigation, domestic, urban/rural water supply and livestock. The overall water storage in the sub-catchments showed a negative water balance for the year 2018. The observed and simulated peak streamflow were 8.16 m<sup>3</sup>/s and 7.7 m<sup>3</sup>/s occurring during the month of January and February respectively. The WEAP model performance achieved R<sup>2</sup> of 0.98 during calibration and 0.95 for validation, and an NSE of 0.83 for calibration and 0.85 during validation. The values of objective functions show that the hydrology of the Mutama-Bweengwa, Kasaka and Magoye sub-catchments as predicted by the WEAP model provides satisfactory confidence for prediction of future streamflow and hence projection based on future scenarios.展开更多
文摘以龙口市为例,利用WEAP(Water Evaluation And Planning,水资源评估和规划系统)软件建立了水资源优化配置模型。该模型把满意度函数作为水资源优化配置模型的目标函数,满意度函数包括3个子函数,即:社会效益、经济效益和环境效益。在不同的节水和经济发展速度下的5个方案进行了模拟计算,求得社会效益,经济效益以及环境效益,再通过分析3个子函数的权重,计算最终的满意度,选择最优方案。同时,为龙口市未来的水资源开发利用提供了可靠的科学依据。
文摘以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针对各种管理措施,组成管理方案,进行效果分析,以达到流域水资源的最佳利用.
文摘Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via its application to Hengshui Basin of Fudong Pai River. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users' behavior. Water demand management is one of the options discussed in detail. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. Within the limits of data availability, it appears that most water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not suffice during dry years. Nevertheless, the ease of use of the model and its user-friendly interfaces make it particularly useful for discussions and dialogue on water resources management among stakeholders.
文摘Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 41 km before joining into the upper part of Chongwe River. The Kanakatampa Stream is a tributary of the Chongwe River. It meanders from the Kanakatampa Area for approximately 52 km before discharging into the middle of the upper part of the Chongwe River. The Chongwe River Catchment which is a sub-catchment of the Zambezi Basin drew the attention of researchers and policymakers when the Chongwe River started drying up in the dry seasons causing a water crisis particularly in the downstream regions of the middle catchment. Therefore, it is important from the water resources management perspective, to assess the contribution of tributaries into the flows of the Chongwe River. Ngwerere and Kanakatampa streams are socially, economically, and environmentally important streams for the city of Lusaka and surrounding area. This study, therefore, concentrated on evaluating the flow contribution of the two streams to the Chongwe River using the Water Evaluation And Planning (WEAP) tool. The streamflow data (1970-2010) recorded at the Chongwe Great East Road Bridge gauging station were used in the WEAP embedded Parameter ESTimation (PEST) auto-calibration tool to calibrate (1970-1999) and validate (2000-2010) the model. The monthly streamflow model calibration and validation results were assessed using the correlation coefficient (CC), Coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe Coefficient of Efficiency (NSE), and Percent bias (PBIAS). The model performance results achieved were PBIAS of 1.24%, CC = 0.81, R<sup>2</sup> = 0.66 and NSE = 0.62 during the calibration period and a positive PBIAS of 2.94%, CC = 0.81, R<sup>2</sup> = 0.67 and NSE = 0.62 during the validation period. The median of the flows (Q<sub>50</sub>) was obtained from the historical flow duration curves (FDCs) generated in averaged intervals of 10-year from 1970 to 2019. The results showed that on average, the Ngwerere and Kanakatampa Streams contribute 52.8% and 29.6% respectively, to the flow of the Chongwe River in the upper and middle Catchment. The results also showed that the contribution of the Ngwerere and Kanakatampa Streams to the Chongwe River discharge has been reducing historically at a rate of 0.65% per decade and 1.35% per decade respectively over a period of 50 years (1970-2019). Suggestions for sustainable management of the tributaries such as the Ngwerere and Kanakatampa Streams were provided in this study.
文摘Climate change continues to pose a threat to the sustainability of water resources while, water need is increasing. In spite of the efforts made by the state authorities to build water infrastructure, a large majority of the population is not having access to drinking water. In this study, Water Evaluation and Planning (WEAP) model was used to model the current situation of water supply and demands, to create scenarios for future water demands and supply. The results show that, in contrast to the livestock sector, which has a zero DNS, huge deficits are observed in reference scenario. These unsatisfied demands (DNS) are dominated by deficits in rice irrigation. The analysis of the evolution of demand according to the growth scenarios has shown that the deficits already observed in the reference scenario will reach 100.45 × 10<sup>6</sup> m<sup>3</sup> in 2040. To mitigate the effects of such deficits, water management optimization measures have been proposed. Strengthening the water supply to urban centers from the creation of dams could considerably reduce the observed deficits. These results are an important decision support tool for sustainable water resource management in the Lobo watershed. However, these strategies to improve access to water depend on the government’s political will on water and economic opportunities.
文摘Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure on water resources. This study assesses the hydrological components and ascertains the available water resources and unmet demand in the sub-catchments using the Water Evaluation And Planning (WEAP) Model and hydrometeorological data collected between 1951 and 2018. The model was calibrated and validated on 1971-1981 and 2008-2018 data respectively. The results reveal that the sub-catchments have transitioned from positive to negative water balance with -164.295 Mm<sup>3</sup>/year for Mutama-Bweengwa, -19.021 Mm<sup>3</sup>/year for Kasaka and -86.368 Mm<sup>3</sup>/year for Magoye. Evaporation was 1815.259 Mm<sup>3</sup>/year for Mutama-Bweengwa, 1162.655 Mm<sup>3</sup>/year for Kasaka and 1505.664 Mm<sup>3</sup>/year for Magoye. The demand for water has been increasing over time for various purposes such as irrigation, domestic, urban/rural water supply and livestock. The overall water storage in the sub-catchments showed a negative water balance for the year 2018. The observed and simulated peak streamflow were 8.16 m<sup>3</sup>/s and 7.7 m<sup>3</sup>/s occurring during the month of January and February respectively. The WEAP model performance achieved R<sup>2</sup> of 0.98 during calibration and 0.95 for validation, and an NSE of 0.83 for calibration and 0.85 during validation. The values of objective functions show that the hydrology of the Mutama-Bweengwa, Kasaka and Magoye sub-catchments as predicted by the WEAP model provides satisfactory confidence for prediction of future streamflow and hence projection based on future scenarios.