期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows
1
作者 Lan JIANG Jie WU +1 位作者 Liming YANG Hao DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期961-980,共20页
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit... A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy. 展开更多
关键词 circular function-based gas kinetic flux solver(C-GKFS) weighted essentially non-oscillatory(weno)scheme compressible flow finite volume method
下载PDF
Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
2
作者 Zachary M.Miksis Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期3-29,共27页
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ... Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Fixed-point fast sweeping methods weighted essentially non-oscillatory(weno)schemes Sparse grids Static Hamilton-Jacobi(H-J)equations Eikonal equations
下载PDF
Improved Symmetry Property of High Order Weighted Essentially Non-Oscillatory Finite Difference Schemes for Hyperbolic Conservation Laws 被引量:1
3
作者 Wai Sun Don Peng Li +1 位作者 Kwun Ying Wong Zhen Gao 《Advances in Applied Mathematics and Mechanics》 SCIE 2018年第6期1418-1439,共22页
This study aims to investigate the rapid loss of numerical symmetry for problems with symmetrical initial conditions and boundary conditions when solved by the seventh and higher order nonlinear characteristic-wise we... This study aims to investigate the rapid loss of numerical symmetry for problems with symmetrical initial conditions and boundary conditions when solved by the seventh and higher order nonlinear characteristic-wise weighted essentially non-oscillatory(WENO)finite difference schemes.Using the one-dimensional double rarefaction wave problem and the Sedov blast-wave problems,and the twodimensional Rayleigh-Taylor instability(RTI)problem as examples,we illustrate numerically that the sensitive interaction of the round-off error due to the numerical unstable explicit form of the local lower order smoothness indicators in the nonlinear weights definition,which are often given and used in the literature,and the nonlinearity of the WENO scheme are responsible for the rapid growth of asymmetry of an otherwise symmetric problem.An equivalent but compact and numerical stable compact form of the local lower order smoothness indicators is suggested for delaying the onset of and reducing the magnitude of the symmetry error.The benefits of using the compact form of the local lower order smoothness indicators should also be applicable to non-symmetrical strongly non-linear problems in terms of improved numerical stability,reduced rounding errors and increased computational efficiency. 展开更多
关键词 weighted essentially non-oscillatory SYMMETRY smoothness indicator hyperbolic conservation laws
原文传递
基于保色散关系的迎风WENO格式的研究
4
作者 李文成 封建湖 邓子辰 《西北工业大学学报》 EI CAS CSCD 北大核心 2006年第2期165-169,共5页
W ENO(W eighted E ssentially N on-O scillatory)格式能够高分辨率地捕捉诸如激波等间断,而保色散关系(D issipation-R elation-P reserv ing,DRP)格式适宜于处理高频波传播问题。计算气动声学(Com putational-A eroacoustics,CAA)领... W ENO(W eighted E ssentially N on-O scillatory)格式能够高分辨率地捕捉诸如激波等间断,而保色散关系(D issipation-R elation-P reserv ing,DRP)格式适宜于处理高频波传播问题。计算气动声学(Com putational-A eroacoustics,CAA)领域有大量的既有高频波传播又带有激波的问题,结合W ENO格式和DRP格式的优点基于保色散关系构造出优化的迎风W ENO格式。数值实验中比较该格式捕捉波数的能力和精度,显示处理CAA基本问题具有高精度、高分辨率的特点。 展开更多
关键词 加权本质无振荡格式(weno) 高分辨率 保色散关系 计算气动声学
下载PDF
Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme 被引量:4
5
作者 Peixun YU Junqiang BAI +2 位作者 Hai YANG Song CHEN Kai PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1020-1029,共10页
Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) sche... Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) scheme is proposed at the interfaces of multi-block grids.With the idea of Dispersion-Relation-Preserving(DRP) scheme, different weight coefficients are obtained by optimization, so that it is in WENO schemes with various characteristics of dispersion and dissipation. On the basis, hybrid flux vector splitting method is utilized to intelligently judge the amplitude of the gap between grid interfaces. After the simulation and analysis of 1D convection equation with different initial conditions, modified WENO scheme is proved to be able to independently distinguish the gap amplitude and generate corresponding dissipation according to the grid resolution. Using the idea of flux reconstruction at grid interfaces, modified WENO scheme with increasing dissipation is applied at grid points, while DRP scheme with low dispersion and dissipation is applied at the inner part of grids. Moreover, Gauss impulse spread and periodic point sound source flow among three cylinders with multi-scale grids are carried out. The results show that the flux reconstruction method at grid interfaces is capable of dealing with Computational Aero Acoustics(CAA) multi-scale problems. 展开更多
关键词 Computational aeroacousties Dispersion-Relation-Preserving (DRP) scheme Flux reconstruction Modified weight essentially non-oscillatory weno)scheme Multi-size mesh
原文传递
HIGH ORDER WEIGHTED ESSENTIALLY NON-OSCILLATION SCHEMES FOR ONE-DIMENSIONAL DETONATION WAVE SIMULATIONS 被引量:3
6
作者 Zhen Gao Wai Sun Don Zhiqiu Li 《Journal of Computational Mathematics》 SCIE CSCD 2011年第6期623-638,共16页
In this paper, three versions of WENO schemes WENO-JS, WENO-M and WENO-Z are used for one-dimensional detonation wave simulations with fifth order characteristic based spatial flux reconstruction. Numerical schemes fo... In this paper, three versions of WENO schemes WENO-JS, WENO-M and WENO-Z are used for one-dimensional detonation wave simulations with fifth order characteristic based spatial flux reconstruction. Numerical schemes for solving the system of hyperbolic conversation laws using the ZND analytical solution as initial condition are presented. Numerical simulations of one-dimensional detonation wave for both stable and unstable cases are performed. In the stable case with overdrive factor f = 1.8, the temporal histories of peak pressure of the detonation front computed by WENO-JS and WENO-Z reach the theoretical steady state. In comparison, the temporal history of peak pressure computed by the WENO-M scheme fails to reach and oscillates around the theoretical steady state. In the unstable cases with overdrive factors f = 1.6 and f = 1.3, the results of all WENO schemes agree well with each other as the resolution, defined as the number of grid points per half-length of reaction zone, increases. Furthermore, for overdrive factor f = 1.6, the grid convergence study demonstrates that the high order WENO schemes converge faster than other existing lower order schemes such as unsplit scheme, Roe's solver with minmod limiter and Roe's solver with superbee limiter in reaching the predicted peak pressure. For overdrive factor f = 1.3, the temporal history of peak pressure shows an increasingly chaotic behavior even at high resolution. In the case of overdrive factor f = 1.1, in accordance with theoretical studies, an explosion occurs and different WENO schemes leading to this explosion appear at slightly different times. 展开更多
关键词 weighted essentially non-oscillatory DETONATION ZND.
原文传递
非结构网格上求解二维H-J方程的一种WENO格式
7
作者 张亮亮 王春武 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期396-402,共7页
基于WENO(Weighted Essentially Non-Oscillatory)的思想,提出了一种在非结构网格上求解二维Hamilton-Jacobi(简称H-J)方程的数值方法.该方法利用Abgrall提出的数值通量,在每个三角形单元上构造三次加权插值多项式,得到了一个求解H-J方... 基于WENO(Weighted Essentially Non-Oscillatory)的思想,提出了一种在非结构网格上求解二维Hamilton-Jacobi(简称H-J)方程的数值方法.该方法利用Abgrall提出的数值通量,在每个三角形单元上构造三次加权插值多项式,得到了一个求解H-J方程的高阶精度格式.数值实验结果表明,该方法计算速度较快,具有较高的精度,而且对导数间断有较高的分辨率. 展开更多
关键词 H-J方程 非结构网格 weno 三次加权插值多项式
下载PDF
Hypersonic Shock Wave/Boundary Layer Interactions by a Third-Order Optimized Symmetric WENO Scheme 被引量:1
8
作者 Li Chen Guo Qilong +1 位作者 Li Qin Zhang Hanxin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期524-534,共11页
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme... A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions. 展开更多
关键词 hypersonic flows shock wave/boundary layer interactions weighted essentially non-oscillatory(weno)scheme slip boundary conditions
下载PDF
高效率的特征型紧致WENO混合格式
9
作者 骆信 吴颂平 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第7期1379-1386,共8页
特征型紧致加权基本无振荡(WENO)混合格式HCW-R结合了迎风紧致格式CS5-P和WENO格式,具有十分优异的分辨率特性。但在求解多维方程组时,HCW-R格式需要求解块状三对角方程组,因而计算代价十分高昂。采用迎风紧致格式CS5-F代替CS5-P,构造... 特征型紧致加权基本无振荡(WENO)混合格式HCW-R结合了迎风紧致格式CS5-P和WENO格式,具有十分优异的分辨率特性。但在求解多维方程组时,HCW-R格式需要求解块状三对角方程组,因而计算代价十分高昂。采用迎风紧致格式CS5-F代替CS5-P,构造了一个新的特征型紧致WENO混合格式HCW-E。由于HCW-E的特殊形式,其可沿迎风方向、由边界处向内推进求解,避免了处理三对角或块状三对角方程组,从而其计算代价与显式格式无异。虽然就分辨率而言,HCW-E稍逊于HCW-R,但前者的计算效率要显著高于后者。因此,当花费相同的计算代价,HCW-E格式可以获得更好的数值结果。一系列求解Euler方程组的数值试验验证了HCW-E的高分辨率特性和相比HCW-R更高的计算效率。HCW-E格式的效率优势在求解高维问题时更为明显。 展开更多
关键词 紧致格式 加权基本无振荡(weno)格式 混合格式 高分辨率 激波捕捉
下载PDF
DEVELOPMENT AND APPLICATIONS OF WENO SCHEMES IN CONTINUUM PHYSICS
10
作者 Chiwang Shu(Division of Applied Mathematics, Brovidence, Rhode Island 02912,USA) 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第z1期16-20,共5页
This paper briefly presents the general ideas of high order accurate weighted essentially non oscillatory (WENO) schemes, and describes the similarities and differences of the two classes of WENO schemes: finite vo lu... This paper briefly presents the general ideas of high order accurate weighted essentially non oscillatory (WENO) schemes, and describes the similarities and differences of the two classes of WENO schemes: finite vo lume schemes and finite difference schemes. We also briefly mention a recent development of WENO schemes, namely an adaptive approach within the finite difference framework using smooth time dependent curvilinear coordinates. 展开更多
关键词 weighted essentially non-oscillatory FINITE DIFFERENCE METHOD FINITE volume METHOD adaptive METHOD
下载PDF
Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations
11
作者 Ernie Tsybulnik Xiaozhi Zhu Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1339-1364,共26页
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th... High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 weighted essentially non-oscillatory(weno)schemes Multi-resolution weno schemes Sparse grids High spatial dimensions Hyperbolic partial differential equations(PDEs)
下载PDF
Quinpi:Integrating Conservation Laws with CWENO Implicit Methods
12
作者 G.Puppo M.Semplice G.Visconti 《Communications on Applied Mathematics and Computation》 2023年第1期343-369,共27页
Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Im... Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws. 展开更多
关键词 Implicit schemes essentially non-oscillatory schemes Finite volumes weno and Cweno reconstructions
下载PDF
爆轰波模拟中一个保正的有限体积WENO格式
13
作者 邓辰峰 《西安文理学院学报(自然科学版)》 2023年第3期22-29,39,共9页
对一维爆轰波的数值模拟设计了一种保正的有限体积WENO格式.以一维反应欧拉方程组作为描述爆轰波的控制方程,对方程组在空间离散上采用三阶WENO重构的有限体积法,时间离散上采用Strang分裂法和二阶龙格库塔法.从爆轰波的数值模拟中可以... 对一维爆轰波的数值模拟设计了一种保正的有限体积WENO格式.以一维反应欧拉方程组作为描述爆轰波的控制方程,对方程组在空间离散上采用三阶WENO重构的有限体积法,时间离散上采用Strang分裂法和二阶龙格库塔法.从爆轰波的数值模拟中可以观察到,在压力快速变化的区域使用一般的WENO重构方法会使得压力出现负值.提出了一种简单且有效的策略,使得重构的压力具有保正性.通过数值算例验证了所提出的数值格式的稳定性和收敛性,以及对爆轰波结构变化捕捉的良好能力. 展开更多
关键词 爆轰波 保正性 Strang分裂法 weno重构
下载PDF
New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties
14
作者 Alina Chertock Michael Herty +3 位作者 Arsen S.Iskhakov Safa Janajra Alexander Kurganov Maria Lukacova-Medvid'ova 《Communications on Applied Mathematics and Computation》 EI 2024年第3期2011-2044,共34页
In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume fram... In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving. 展开更多
关键词 Hyperbolic conservation and balance laws with uncertainties Finite-volume methods Central-upwind schemes weighted essentially non-oscillatory(weno)interpolations
下载PDF
几个求解Euler方程的验证模型
15
作者 刘君 刘瑜 《气体物理》 2024年第6期62-73,共12页
从2018年开始陆续发现在特定条件下WENO格式计算误差比1阶迎风格式还大的数值算例。经过定性分析后,作者认为这种现象是采用空间多点模板构造格式的方法不符合双曲型方程的特征线理论以及通量分裂格式引入非物理波动所致。提出了基于Eu... 从2018年开始陆续发现在特定条件下WENO格式计算误差比1阶迎风格式还大的数值算例。经过定性分析后,作者认为这种现象是采用空间多点模板构造格式的方法不符合双曲型方程的特征线理论以及通量分裂格式引入非物理波动所致。提出了基于Euler方程对1阶迎风、MUSCL和WENO格式进行各种比对数值实验论证这个观点的若干算例。希望将其作为差分法求解Euler方程的验证模型,以供同行参考。目前国内外文献中验证高阶格式的经典算例,例如等熵涡、双Mach反射、激波和自由界面干扰等,验证时大多根据数值现象定性比较,缺乏定量指标,本文提出的验证模型能够计算数值解误差,可以进行定量评价。通过对这些验证模型的分析,提出了一种可以有效降低初始激波诱导误差的算法。 展开更多
关键词 验证 高阶格式 加权本质无振荡格式 几何守恒律 通矢量分裂 通量差分分裂
下载PDF
非平衡流解耦方法及其计算激波诱导燃烧的应用验证 被引量:8
16
作者 孙明波 梁剑寒 王振国 《航空动力学报》 EI CAS CSCD 北大核心 2008年第11期2055-2061,共7页
介绍并发展了一种改进的化学非平衡流动解耦方法.将流动控制方程与化学反应生成源项解耦处理,组分对流项的矢通量分裂基于流动方程密度对流项的分裂形式给出.对流项采用五阶WENO格式求解,化学反应源项的刚性采用简化的隐式方法进行处理... 介绍并发展了一种改进的化学非平衡流动解耦方法.将流动控制方程与化学反应生成源项解耦处理,组分对流项的矢通量分裂基于流动方程密度对流项的分裂形式给出.对流项采用五阶WENO格式求解,化学反应源项的刚性采用简化的隐式方法进行处理.将该方法应用于预混H2/O2和H2/Air激波诱导燃烧计算,得到的定常及非定常燃烧过程与实验观测相符,振荡频率与实验测量较吻合,结果表明该方法应用于多组分多步反应流计算是可行的. 展开更多
关键词 激波诱导燃烧 非平衡流 解耦方法 weno格式
下载PDF
计算流体力学中的高精度数值方法回顾(英文) 被引量:21
17
作者 成娟 舒其望 《计算物理》 EI CSCD 北大核心 2009年第5期633-655,共23页
在过去的二、三十年中,计算流体力学(CFD)领域的高精度数值方法的设计和应用研究非常活跃.高精度数值方法主要针对具有复杂解结构流场的模拟而设计.回顾CFD中主要用于可压缩流模拟的几类高精度格式的发展与应用.可压缩流的一个重要特征... 在过去的二、三十年中,计算流体力学(CFD)领域的高精度数值方法的设计和应用研究非常活跃.高精度数值方法主要针对具有复杂解结构流场的模拟而设计.回顾CFD中主要用于可压缩流模拟的几类高精度格式的发展与应用.可压缩流的一个重要特征是流场中存在激波、界面以及其它间断,同时还常常在解的光滑区域包含复杂结构.这对设计既不振荡又保持高阶精度的格式带来特别的挑战.重点讨论本质无振荡(ENO)、加权本质无振荡(WENO)有限差分与有限体积格式、间断Galerkin有限元(DG)方法,描述它们各自的特点、长处与不足,简要回顾这些方法的发展和应用,重点介绍它们近五年来的最新进展. 展开更多
关键词 本质无振荡(ENO) 加权本质无振荡(weno) 间断Galerkin(DG) 高精度 有限差分 有限体积 有限元 计算流体力学 可压缩流
下载PDF
基于加权本质无振荡格式的二维溃坝水流数值模拟 被引量:13
18
作者 魏文礼 郭永涛 《水利学报》 EI CSCD 北大核心 2007年第5期596-600,共5页
将加权本质无振荡WENO(Weighted essentially non-oscillatory)格式和Runge-Kutta时间离散的思想应用于二维浅水控制方程的求解中,建立了模拟大坝瞬间全溃或局部溃倒所致的洪水演进过程的数学模型。应用该模型对一维矩形明渠中大坝瞬间... 将加权本质无振荡WENO(Weighted essentially non-oscillatory)格式和Runge-Kutta时间离散的思想应用于二维浅水控制方程的求解中,建立了模拟大坝瞬间全溃或局部溃倒所致的洪水演进过程的数学模型。应用该模型对一维矩形明渠中大坝瞬间全溃所致的水流运动进行了数值计算,并与理论解进行了比较,证实了方法的可靠性。最后用该模型预测了矩形河道中大坝瞬间局部溃倒时的洪水演进过程,模拟结果与实际相符。算例表明采用WENO格式所建立的高分辨率溃坝模型能够很好地模拟溃坝波的演进过程。 展开更多
关键词 weno格式 溃坝 数值模拟
下载PDF
一种通量加权型紧致格式 被引量:1
19
作者 袁湘江 涂国华 +1 位作者 许坦 陆利蓬 《航空动力学报》 EI CAS CSCD 北大核心 2008年第1期64-69,共6页
将通量加权的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的加权型差分格式.利用该格式与二阶TVD格式分别计算了一维方波、组合波问题和一些黎曼问题,如Sod问题和Shu问题,以及一维定常激波问题.计算结果的比较表明加权... 将通量加权的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的加权型差分格式.利用该格式与二阶TVD格式分别计算了一维方波、组合波问题和一些黎曼问题,如Sod问题和Shu问题,以及一维定常激波问题.计算结果的比较表明加权格式无论在捕捉各种间断,还是在分辨各种复杂波系上,都具有较大的优势,并与精确解非常吻合. 展开更多
关键词 航空 航天推进系统 数值方法 迎风紧致格式 通量加权型差分格式
下载PDF
变截面管道对瓦斯爆炸特性影响的数值模拟 被引量:19
20
作者 郑有山 王成 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第11期947-949,共3页
以气体爆炸理论为基础,利用高精度的加权本质无振荡(WENO)格式对变截面管道中的瓦斯爆炸进行了数值模拟,探讨了变截面管道对瓦斯爆炸火焰传播的影响规律,得到了变截面管道造成瓦斯爆炸强度增大的结论.在此基础上,分析了障碍物、壁面和... 以气体爆炸理论为基础,利用高精度的加权本质无振荡(WENO)格式对变截面管道中的瓦斯爆炸进行了数值模拟,探讨了变截面管道对瓦斯爆炸火焰传播的影响规律,得到了变截面管道造成瓦斯爆炸强度增大的结论.在此基础上,分析了障碍物、壁面和三波结构对瓦斯二次爆炸的影响.结果表明,经壁面反射后的激波和三波点的碰撞都能够诱导二次爆炸的产生.这些结论为瓦斯爆炸的预防、安全评估和防火防爆提供了重要的理论依据. 展开更多
关键词 瓦斯爆炸 数值模拟 加权本质无振荡(weno) 变截面管道
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部