A new method to eliminate the oil whip online is put forward by use ofpassive electromagnetic damper. The damper works contactless and with DC current. Neither sensor norclosed loop control is needed. The dynamic equa...A new method to eliminate the oil whip online is put forward by use ofpassive electromagnetic damper. The damper works contactless and with DC current. Neither sensor norclosed loop control is needed. The dynamic equations of rotor-bearing system are built up bycombining d'Alemdert principle with Rize way, and the nonlinear oil film forces based on unsteadyshort bearing model are coupled to system. Such nonlinear equations are numerically solved byNewmark integration method. The calculated results show that the bifurcation behavior of the systemcan be. changed and the oil whip of the rotor may be well damped by external damping. Thebifurcation diagrams also show that the subharmonic vibration amplitude decreases in motion and thespeed at which the system losses its stability increases obviously by exerting external damping.Then experiments are carried out to demonstrate this phenomenon. It is observed that the complextrajectories of the journal motion are disappeared and the rotor-bearing system became stable whenthe power of passive electromagnetic damper is turned on. The experiments have good repeatability.展开更多
Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips ha...Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.展开更多
DEAR EDITOR,Cryptic diversity(CD),the presence of highly divergent phylogenetic lineages within closed morphological species,has been documented for many taxa.Great arachnid orders such as Araneae or Scorpiones are we...DEAR EDITOR,Cryptic diversity(CD),the presence of highly divergent phylogenetic lineages within closed morphological species,has been documented for many taxa.Great arachnid orders such as Araneae or Scorpiones are well studied and many cases of CD have been described therein;to date,however,related research on smaller arachnid orders,such as whip spiders(Amblypygi),remains lacking.展开更多
The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip...The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip's geometrical figuration, material property and driven velocity on the long-rod armor-piercing-projectile. The moving velocity of the flying-whip driven by different explosives and the pressure attenuation law of shock wave travelling in the back plate were measured respectively with the electric probe method and the manganin piezoresistive gauge technique. The following conclusions based on a great quantity of experimental data were drawn: compared with the sandwich ERA the flying-whip multifunctional ERA has very good protection function against the long-rod armor-piercing-projectile, the shaped charge warhead and the anti-armor tandem warhead. In addition, the composite plate made of the armor-steel and rubber plate can lessen the vibration and shock of the main armor caused by the explosion of the charge..展开更多
Dynamic modeling of a hose-drogue aerial refueling system(HDARS) and an integral sliding mode backstepping controller design for the hose whipping phenomenon(HWP) during probe-drogue coupling are studied. Firstly,...Dynamic modeling of a hose-drogue aerial refueling system(HDARS) and an integral sliding mode backstepping controller design for the hose whipping phenomenon(HWP) during probe-drogue coupling are studied. Firstly, a dynamic model of the variable-length hose-drogue assembly is built for the sake of exploiting suppression methods for the whipping phenomenon.Based on the lumped parameter method, the hose is modeled by a series of variable-length links connected with frictionless joints. A set of iterative equations of the hose's three-dimensional motion is derived subject to hose reeling in/out, tanker motion, gravity, and aerodynamic loads accounting for the effects of steady wind, atmospheric turbulence, and tanker wake. Secondly,relying on a permanent magnet synchronous motor and high-precision position sensors, a new active control strategy for the HWP on the basis of the relative position between the tanker and the receiver is proposed. Considering the strict-feedback configuration of the permanent magnet synchronous motor, a rotor position control law based on the backstepping method is designed to insure global stability. An integral of the rotor position error and an exponential sliding mode reaching law of the current errors are applied to enhance control accuracy and robustness. Finally,the simulation results show the effectiveness of the proposed model and control laws.展开更多
Rules of Classification Societies all around the world have made changes on design wave loads' value and fatigue influence factor modification due to the influence of springing and whipping on ultra-large containe...Rules of Classification Societies all around the world have made changes on design wave loads' value and fatigue influence factor modification due to the influence of springing and whipping on ultra-large containerships.The paper firstly introduced 3-D linear hydroelastic theory in frequency domain and 3-D nonlinear hydroelastic theory in time domain, considering large amplitude motion nonlinearity and slamming force due to the severe relative motion between ship hull and wave. Then the spectrum analysis method and time domain statistical analysis method were introduced, which can make fatigue analysis under a series of standard steps in frequency and time domain, respectively. Finally, discussions on the influence factor of springing and whipping on fatigue damages of 8500 TEU and 10000 TEU containerships with different loading states were made. The fatigue assessment of different position on the midship section was done on the basis of nominal stress. The fatigue damage due to whipping can be the same as the fatigue damage due to springing and even sometimes can be larger than the springing damage. Besides, some suggestions on calculating load case selection were made to minimize the quantity of work in frequency and time domain. Thus, tools for fatigue influence factor modification were provided to meet the demand of IACS-UR.展开更多
Dry whip motion is an instability of rubbing rotor system and may cause catastrophic failures of rotating machinery.Up to now,the related mechanisms of the dry whip is still not well understood.This paper aims to buil...Dry whip motion is an instability of rubbing rotor system and may cause catastrophic failures of rotating machinery.Up to now,the related mechanisms of the dry whip is still not well understood.This paper aims to build the relationship between the complex nonlinear modes and the dry whip motion,and propose an effective method to predict the response characteristics and existence boundary of the dry whip through complex nonlinear modes.For the first time,the paper discusses how to use the complex nonlinear modes to predict the dry whip systematically,and as a consequence,the mechanism of the relationship between the complex nonlinear mode and the dry whip is revealed.The results show that the Backward Whirl(BW)mode motion of the rubbing rotor system dominates the response characteristics and the existence boundary of dry whip.The whirl amplitude and whirl frequency of dry whip are equal to the modal amplitude and modal frequency of the BW mode at the jump up point where the modal damping is equal to zero.The existence boundary corresponds to the critical rotation speed where the minimum of the modal damping of the BW mode motion is exactly equal to zero.Moreover,the proposed nonlinear modal method in this article is very effective for the prediction of dry whip of the more complicated practical rotor system,which has been verified by applying the predicted method into a rubbing rotor test rig.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50375140).
文摘A new method to eliminate the oil whip online is put forward by use ofpassive electromagnetic damper. The damper works contactless and with DC current. Neither sensor norclosed loop control is needed. The dynamic equations of rotor-bearing system are built up bycombining d'Alemdert principle with Rize way, and the nonlinear oil film forces based on unsteadyshort bearing model are coupled to system. Such nonlinear equations are numerically solved byNewmark integration method. The calculated results show that the bifurcation behavior of the systemcan be. changed and the oil whip of the rotor may be well damped by external damping. Thebifurcation diagrams also show that the subharmonic vibration amplitude decreases in motion and thespeed at which the system losses its stability increases obviously by exerting external damping.Then experiments are carried out to demonstrate this phenomenon. It is observed that the complextrajectories of the journal motion are disappeared and the rotor-bearing system became stable whenthe power of passive electromagnetic damper is turned on. The experiments have good repeatability.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120002110011)State Key Laboratory of Hydroscience and Engineering(Grant No.2014-KY-05)+1 种基金Tsinghua Scholarship for Overseas Graduate Studies,China(Grant No.2013128)Special Funds for Marine Renewable Engergy Projects(Grant No.GHME2012GC02)
文摘Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.
文摘DEAR EDITOR,Cryptic diversity(CD),the presence of highly divergent phylogenetic lineages within closed morphological species,has been documented for many taxa.Great arachnid orders such as Araneae or Scorpiones are well studied and many cases of CD have been described therein;to date,however,related research on smaller arachnid orders,such as whip spiders(Amblypygi),remains lacking.
文摘The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip's geometrical figuration, material property and driven velocity on the long-rod armor-piercing-projectile. The moving velocity of the flying-whip driven by different explosives and the pressure attenuation law of shock wave travelling in the back plate were measured respectively with the electric probe method and the manganin piezoresistive gauge technique. The following conclusions based on a great quantity of experimental data were drawn: compared with the sandwich ERA the flying-whip multifunctional ERA has very good protection function against the long-rod armor-piercing-projectile, the shaped charge warhead and the anti-armor tandem warhead. In addition, the composite plate made of the armor-steel and rubber plate can lessen the vibration and shock of the main armor caused by the explosion of the charge..
基金supported by the National Natural Science Foundation of China(No.61304120)
文摘Dynamic modeling of a hose-drogue aerial refueling system(HDARS) and an integral sliding mode backstepping controller design for the hose whipping phenomenon(HWP) during probe-drogue coupling are studied. Firstly, a dynamic model of the variable-length hose-drogue assembly is built for the sake of exploiting suppression methods for the whipping phenomenon.Based on the lumped parameter method, the hose is modeled by a series of variable-length links connected with frictionless joints. A set of iterative equations of the hose's three-dimensional motion is derived subject to hose reeling in/out, tanker motion, gravity, and aerodynamic loads accounting for the effects of steady wind, atmospheric turbulence, and tanker wake. Secondly,relying on a permanent magnet synchronous motor and high-precision position sensors, a new active control strategy for the HWP on the basis of the relative position between the tanker and the receiver is proposed. Considering the strict-feedback configuration of the permanent magnet synchronous motor, a rotor position control law based on the backstepping method is designed to insure global stability. An integral of the rotor position error and an exponential sliding mode reaching law of the current errors are applied to enhance control accuracy and robustness. Finally,the simulation results show the effectiveness of the proposed model and control laws.
文摘Rules of Classification Societies all around the world have made changes on design wave loads' value and fatigue influence factor modification due to the influence of springing and whipping on ultra-large containerships.The paper firstly introduced 3-D linear hydroelastic theory in frequency domain and 3-D nonlinear hydroelastic theory in time domain, considering large amplitude motion nonlinearity and slamming force due to the severe relative motion between ship hull and wave. Then the spectrum analysis method and time domain statistical analysis method were introduced, which can make fatigue analysis under a series of standard steps in frequency and time domain, respectively. Finally, discussions on the influence factor of springing and whipping on fatigue damages of 8500 TEU and 10000 TEU containerships with different loading states were made. The fatigue assessment of different position on the midship section was done on the basis of nominal stress. The fatigue damage due to whipping can be the same as the fatigue damage due to springing and even sometimes can be larger than the springing damage. Besides, some suggestions on calculating load case selection were made to minimize the quantity of work in frequency and time domain. Thus, tools for fatigue influence factor modification were provided to meet the demand of IACS-UR.
基金the financial support from the National Natural Science Foundation of China(No.52005252)the Fundamental Research Funds for the Central Universities(No.NT2020018)the National Science and Technology Major Project(2017-IV-0008-0045)。
文摘Dry whip motion is an instability of rubbing rotor system and may cause catastrophic failures of rotating machinery.Up to now,the related mechanisms of the dry whip is still not well understood.This paper aims to build the relationship between the complex nonlinear modes and the dry whip motion,and propose an effective method to predict the response characteristics and existence boundary of the dry whip through complex nonlinear modes.For the first time,the paper discusses how to use the complex nonlinear modes to predict the dry whip systematically,and as a consequence,the mechanism of the relationship between the complex nonlinear mode and the dry whip is revealed.The results show that the Backward Whirl(BW)mode motion of the rubbing rotor system dominates the response characteristics and the existence boundary of dry whip.The whirl amplitude and whirl frequency of dry whip are equal to the modal amplitude and modal frequency of the BW mode at the jump up point where the modal damping is equal to zero.The existence boundary corresponds to the critical rotation speed where the minimum of the modal damping of the BW mode motion is exactly equal to zero.Moreover,the proposed nonlinear modal method in this article is very effective for the prediction of dry whip of the more complicated practical rotor system,which has been verified by applying the predicted method into a rubbing rotor test rig.