Organic matter (OM), total nitrogen (TN), organic phosphorous (OP) and total phosphorous (TP)content of soil in northwest water-level fluctuating zone (WLFZ) of Lake Chaohu under natural and different artifi...Organic matter (OM), total nitrogen (TN), organic phosphorous (OP) and total phosphorous (TP)content of soil in northwest water-level fluctuating zone (WLFZ) of Lake Chaohu under natural and different artificial conditions were ana- lyzed to study the variation of OM, TN, OP and TP. It showed: Flooding and air- drying help to increase soil OM content in study area. Process of flooding and air- drying is conducive to soil adsorption of nitrogen and it can enhance spatial hetero- geneity of soil OM, TN, OP, process of flooding and air-drying also can reduce the difference of TP contents among different points. Riprap embankment is not con- ducive to maintaining soil organic matter under flooded conditions, emergent plants are conducive to maintaining soil organic matter under flooded conditions. Soil with high nitrogen content will release nitrogen to overlying water under flooded condi- tions. Under drying after flooding conditions, demand for phosphorus of vegetation growth will reduce TP content in soil, bare area will enrich phosphorus, when the next flood cover up a greater release of phosphorus will happen展开更多
The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带...【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带生态系统并提升碳汇能力的技术框架,选取位于三峡库区腹心的大浪坝消落带开展实证研究。运用CASA模型测算修复前后大浪坝消落带的净初级生产力(net primary productivity,NPP),基于植被生物量数据计算修复后大浪坝消落带与未修复对照组内不同高程带的碳汇能力,评估林塘碳汇系统的可持续效益。【结果】修复后大浪坝消落带的碳汇能力随时间推移明显提升,NPP由2012年的154.4 g C·m^(2)·a^(-1)增长至2016年的182.5 g C·m^(2)·a^(-1);各高程带的碳汇能力均显著高于对照组,并呈现出随海拔降低而减弱的趋势,170~175 m高程带碳汇能力达到1.827 kg C/m^(2),160~165 m高程带碳汇能力仅为0.830 kg C/m^(2)。林塘系统增强了生态系统的适应性和复原力,形成了适应水位变化的立体固碳模式并有效提升了碳汇效率。【结论】林塘碳汇系统是应对三峡库区复杂水位变化和长时间深水淹没挑战的适应性探索,显示出景观优化、生物多样性、经济效益与碳汇协同耦合的关键特征。研究成果能够为中国大型工程型水库消落带的治理及碳增汇提供科学依据与可复制推广的创新技术模式。展开更多
Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and ...Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and aquatic ecosystem. After the Three Gorges Reservoir was put into use,ecological environment of its WLFZ has aroused wide concern from domestic and foreign experts. On the basis of introducing characteristics of WLFZ of the Three Gorges Reservoir,current ecological environment and main problems of this area were analyzed,plant selection and configuration was elaborated as well as the implementation effect of many WLFZ protection and ecological restoration modes. In view of the actual conditions,pertinent suggestions were proposed for WLFZ of the Three Gorges Reservoir,namely classified protection and ecological restoration,enhancing monitoring and assessment of current situation and change tendency,carrying out technical researches and demonstration of WLFZ wetland ecological restoration.展开更多
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07103-0042012ZX07103-003-03)~~
文摘Organic matter (OM), total nitrogen (TN), organic phosphorous (OP) and total phosphorous (TP)content of soil in northwest water-level fluctuating zone (WLFZ) of Lake Chaohu under natural and different artificial conditions were ana- lyzed to study the variation of OM, TN, OP and TP. It showed: Flooding and air- drying help to increase soil OM content in study area. Process of flooding and air- drying is conducive to soil adsorption of nitrogen and it can enhance spatial hetero- geneity of soil OM, TN, OP, process of flooding and air-drying also can reduce the difference of TP contents among different points. Riprap embankment is not con- ducive to maintaining soil organic matter under flooded conditions, emergent plants are conducive to maintaining soil organic matter under flooded conditions. Soil with high nitrogen content will release nitrogen to overlying water under flooded condi- tions. Under drying after flooding conditions, demand for phosphorus of vegetation growth will reduce TP content in soil, bare area will enrich phosphorus, when the next flood cover up a greater release of phosphorus will happen
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
文摘【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带生态系统并提升碳汇能力的技术框架,选取位于三峡库区腹心的大浪坝消落带开展实证研究。运用CASA模型测算修复前后大浪坝消落带的净初级生产力(net primary productivity,NPP),基于植被生物量数据计算修复后大浪坝消落带与未修复对照组内不同高程带的碳汇能力,评估林塘碳汇系统的可持续效益。【结果】修复后大浪坝消落带的碳汇能力随时间推移明显提升,NPP由2012年的154.4 g C·m^(2)·a^(-1)增长至2016年的182.5 g C·m^(2)·a^(-1);各高程带的碳汇能力均显著高于对照组,并呈现出随海拔降低而减弱的趋势,170~175 m高程带碳汇能力达到1.827 kg C/m^(2),160~165 m高程带碳汇能力仅为0.830 kg C/m^(2)。林塘系统增强了生态系统的适应性和复原力,形成了适应水位变化的立体固碳模式并有效提升了碳汇效率。【结论】林塘碳汇系统是应对三峡库区复杂水位变化和长时间深水淹没挑战的适应性探索,显示出景观优化、生物多样性、经济效益与碳汇协同耦合的关键特征。研究成果能够为中国大型工程型水库消落带的治理及碳增汇提供科学依据与可复制推广的创新技术模式。
基金Sponsored by Follow-up Research Program of the Three Gorges(2013HXKY2-3)
文摘Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and aquatic ecosystem. After the Three Gorges Reservoir was put into use,ecological environment of its WLFZ has aroused wide concern from domestic and foreign experts. On the basis of introducing characteristics of WLFZ of the Three Gorges Reservoir,current ecological environment and main problems of this area were analyzed,plant selection and configuration was elaborated as well as the implementation effect of many WLFZ protection and ecological restoration modes. In view of the actual conditions,pertinent suggestions were proposed for WLFZ of the Three Gorges Reservoir,namely classified protection and ecological restoration,enhancing monitoring and assessment of current situation and change tendency,carrying out technical researches and demonstration of WLFZ wetland ecological restoration.