Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the...Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria electrolytes in SOFCs lowers the open-circuit voltage (OCV) to less than the Nernst voltage. This low OCV has been explained by Wagner’s equation, which is based on chemical equilibrium theory. However, Wagner’s equation is insufficient to explain the low OCV, which should be explained by fluctuation and dissipation theorems. Considering the separation of the Boltzmann distribution and Maxwell’s demon, only carrier species with sufficient energy to overcome the activation energy can contribute to current conduction, as determined by incorporating different constants into the definitions of the chemical and electrical potentials. Then, an energy loss equal to the activation energy will occur because of the interactions between ions and electrons. This energy loss means that an additional thermodynamic law based on an advanced model of Maxwell’s demon is needed. In this report, the zero-point energy can be explained by this additional ther-modynamic law, as can Bell’s non-locality theorem.展开更多
The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results...The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.展开更多
The fine-structure constant of 1/137 is puzzling and has never been fully explained. When the interaction coefficient is 1/137, the transference number should be 136/137. With the transference number concept, we notic...The fine-structure constant of 1/137 is puzzling and has never been fully explained. When the interaction coefficient is 1/137, the transference number should be 136/137. With the transference number concept, we noticed that we must examine the constant of 1/136 instead of 1/137 to discover an empirical relationship in which the fine-structure constant is related to the mass ratio of electrons and quarks. Then, the physical meaning of this empirical relationship is discussed.展开更多
Ted Jacobson discovered that gravity was related to thermodynamics. However, the calculated temperature using the Boltzmann area entropy is still not reasonable. We searched and discovered an empirical equation for th...Ted Jacobson discovered that gravity was related to thermodynamics. However, the calculated temperature using the Boltzmann area entropy is still not reasonable. We searched and discovered an empirical equation for the gravitational constant with a reasonable temperature. The calculated value was 3.20 K, which is similar to the temperature of the cosmic microwave background of 2.73 K. Then, we examined Yasuo Katayama’s theory. For this purpose, we introduced the modified Wagner’s equation, which is compatible with Jarzynski equality. Finally, using Ted Jacobson’s theory, we proposed our theory of gravity with the Gibbs volume entropy.展开更多
文摘Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria electrolytes in SOFCs lowers the open-circuit voltage (OCV) to less than the Nernst voltage. This low OCV has been explained by Wagner’s equation, which is based on chemical equilibrium theory. However, Wagner’s equation is insufficient to explain the low OCV, which should be explained by fluctuation and dissipation theorems. Considering the separation of the Boltzmann distribution and Maxwell’s demon, only carrier species with sufficient energy to overcome the activation energy can contribute to current conduction, as determined by incorporating different constants into the definitions of the chemical and electrical potentials. Then, an energy loss equal to the activation energy will occur because of the interactions between ions and electrons. This energy loss means that an additional thermodynamic law based on an advanced model of Maxwell’s demon is needed. In this report, the zero-point energy can be explained by this additional ther-modynamic law, as can Bell’s non-locality theorem.
文摘The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.
文摘The fine-structure constant of 1/137 is puzzling and has never been fully explained. When the interaction coefficient is 1/137, the transference number should be 136/137. With the transference number concept, we noticed that we must examine the constant of 1/136 instead of 1/137 to discover an empirical relationship in which the fine-structure constant is related to the mass ratio of electrons and quarks. Then, the physical meaning of this empirical relationship is discussed.
文摘Ted Jacobson discovered that gravity was related to thermodynamics. However, the calculated temperature using the Boltzmann area entropy is still not reasonable. We searched and discovered an empirical equation for the gravitational constant with a reasonable temperature. The calculated value was 3.20 K, which is similar to the temperature of the cosmic microwave background of 2.73 K. Then, we examined Yasuo Katayama’s theory. For this purpose, we introduced the modified Wagner’s equation, which is compatible with Jarzynski equality. Finally, using Ted Jacobson’s theory, we proposed our theory of gravity with the Gibbs volume entropy.