Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characterist...Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.展开更多
In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the...In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the heat generated by one of the hot-film and a calibration of the sensors is not required. Two thin Nickel films with the same size were used in this study, separated by an electrical insulating layer. The upper film served as a sensor and the bottom one served as a guard heater. The two Nickel films were operated at a same temperature, so that the Joule heat flux generated by the sensor film transferred to the air with a minimum loss or gain depending on the uncertainties in the film temperature measurements. Analytical solution of the shear stress based on the aforementioned heat flux was obtained. The preliminary results were promising and the estimated wall shear stresses agreed reasonablywell with the directly measured values (with errors less than 20%) in a fully developed turbulent pipe flow. The proposed technique can be improved to further increase precisions.展开更多
Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The...Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The surface and section morphologies of the multi-layer films were observed by a scanning electron microscope (SEM). It is found that the resistance of the sensor increases when it is exposed to toluene vapor and the response has a good linearity with the concentration of toluene. The results show that the P4VP/MWNTs three-layer film sensors have better sensing properties compared with the two-layer film sensors. The related sensing mechanism is studied in detail.展开更多
Pure and doped Polyvinylidene difluoride (PVDF) films, for the detection of infrared radiation, have been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made ...Pure and doped Polyvinylidene difluoride (PVDF) films, for the detection of infrared radiation, have been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made from Polyvinyl Alcohol (PVA) have received considerable attention in recent years. The investigation of surface resistivities of both such films, to this point, has received far less consideration in comparison to pyroelectric effects. In this research, we report temperature dependent surface resistivity measurements of commercial, and of multiwall carbon nanotubes (MWCNT), or Ag-nanoparticle doped PVA films. Without any variation in the temperature range from 22°C to 40°C with controlled humidity, we found that the surface resistivity decreases initially, reaches a minimum, but rises steadily as the temperature continues to increase. This research was conducted with the combined instrumentation of the Keithley Model 6517 Electrometer and Keithley Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films. With the objective to quantify the suitability of PVDF and PVA films as IR detector materials, when using the surface resistivity phenomenon, instead of or in addition to the pyroelectricity, surface resistivity measurements are reported when considering bolometry. We found that the surface resistivity measurements on PVA films were readily implemented.展开更多
The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model...The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.展开更多
The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of th...The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of the phenomenon. Solving a standard problem of forced convection in porous media comes down to predicting the temperature and velocity fields as well as the intensity of the flow as a function of the various parameters of the problem. A numerical study of the condensation in forced convection of a pure and saturated vapor on a vertical wall covered with a porous material is presented. The transfers in the porous medium and the liquid film are described respectively by the Darcy-Brinkman model and the classical boundary layer equations. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. Our study makes it possible to examine and highlight the role of parameters such as: the Froude number and the thickness of the porous layer on the speed and the temperature in the porous medium. Given the objective of our study, the presentation of velocity and temperature profiles is limited in the porous medium. The results show that the Froude number does not influence the thermal field. The temperature increases with an increase in the thickness of the dimensionless porous layer. The decrease in the Froude number leads to an increase in the hydrodynamic field.展开更多
The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the...The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the flow in the porous medium, while the classical boundary layer equations have been exploited in the pure liquid and in the porous medium taking into account inertia and enthalpy convection terms. The problem has been solved numerically. The results are mainly presented in the form of velocity and temperature profiles. The obtained results have been compared with the numerical results of Chaynane et al. [1]. The effects of different influential parameters such as: inclination (ϕ), effective viscosity (Re<sub>K</sub>), and dimensionless thermal conductivity λ<sup>*</sup> on the flow and heat transfers are outlined.展开更多
A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteris...A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteristics of PHE,the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180°domain wall displacement near the easy axis,respectively.However,the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently.The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement.Furthermore,the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.展开更多
The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other ...The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.展开更多
Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effe...Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effects has the hyper- bolic type. For the two-parameter family of periodic waves in the film flow on a vertical wall the modulation equations for nonlinear wave trains are derived and investigated. The stability criterium for roll waves based on the hyperbolicity of the modulation equations is suggested. It is shown that the evolution of stable roll waves can be described by self-similar solutions of the modulation equations.展开更多
A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calcula...A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size, parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0.001~20 MHz.展开更多
基金Project(51276090) supported by the National Natural Science Foundation of ChinaProject(CXLX13_166) supported by Funding of Jiangsu Innovation Program for Graduate EducationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.
基金funded by the National Natural Science Foundation of China (11572078 and 91752101)973 Plan (2014CB744100)
文摘In this letter we present a novel wall shear stress measurement technique for a turbulent boundary layer using sandwiched hot-film sensors. Under certain conditions, satisfactory results can be obtained using only the heat generated by one of the hot-film and a calibration of the sensors is not required. Two thin Nickel films with the same size were used in this study, separated by an electrical insulating layer. The upper film served as a sensor and the bottom one served as a guard heater. The two Nickel films were operated at a same temperature, so that the Joule heat flux generated by the sensor film transferred to the air with a minimum loss or gain depending on the uncertainties in the film temperature measurements. Analytical solution of the shear stress based on the aforementioned heat flux was obtained. The preliminary results were promising and the estimated wall shear stresses agreed reasonablywell with the directly measured values (with errors less than 20%) in a fully developed turbulent pipe flow. The proposed technique can be improved to further increase precisions.
基金partially supported by the National Natural Foundation of China under Grant No.61176066 and No.61101031
文摘Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The surface and section morphologies of the multi-layer films were observed by a scanning electron microscope (SEM). It is found that the resistance of the sensor increases when it is exposed to toluene vapor and the response has a good linearity with the concentration of toluene. The results show that the P4VP/MWNTs three-layer film sensors have better sensing properties compared with the two-layer film sensors. The related sensing mechanism is studied in detail.
文摘Pure and doped Polyvinylidene difluoride (PVDF) films, for the detection of infrared radiation, have been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made from Polyvinyl Alcohol (PVA) have received considerable attention in recent years. The investigation of surface resistivities of both such films, to this point, has received far less consideration in comparison to pyroelectric effects. In this research, we report temperature dependent surface resistivity measurements of commercial, and of multiwall carbon nanotubes (MWCNT), or Ag-nanoparticle doped PVA films. Without any variation in the temperature range from 22°C to 40°C with controlled humidity, we found that the surface resistivity decreases initially, reaches a minimum, but rises steadily as the temperature continues to increase. This research was conducted with the combined instrumentation of the Keithley Model 6517 Electrometer and Keithley Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films. With the objective to quantify the suitability of PVDF and PVA films as IR detector materials, when using the surface resistivity phenomenon, instead of or in addition to the pyroelectricity, surface resistivity measurements are reported when considering bolometry. We found that the surface resistivity measurements on PVA films were readily implemented.
文摘The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.
文摘The study of forced convection in a porous medium has aroused and still arouses today the interest of many scientists and industrialists. A considerable amount of work has been undertaken following the discovery of the phenomenon. Solving a standard problem of forced convection in porous media comes down to predicting the temperature and velocity fields as well as the intensity of the flow as a function of the various parameters of the problem. A numerical study of the condensation in forced convection of a pure and saturated vapor on a vertical wall covered with a porous material is presented. The transfers in the porous medium and the liquid film are described respectively by the Darcy-Brinkman model and the classical boundary layer equations. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. Our study makes it possible to examine and highlight the role of parameters such as: the Froude number and the thickness of the porous layer on the speed and the temperature in the porous medium. Given the objective of our study, the presentation of velocity and temperature profiles is limited in the porous medium. The results show that the Froude number does not influence the thermal field. The temperature increases with an increase in the thickness of the dimensionless porous layer. The decrease in the Froude number leads to an increase in the hydrodynamic field.
文摘The present work presents a study of forced convection condensation of a laminar film of a pure and saturated vapor on a porous plate inclined to the vertical. The Darcy-Brinkman-Forchheimer model is used to write the flow in the porous medium, while the classical boundary layer equations have been exploited in the pure liquid and in the porous medium taking into account inertia and enthalpy convection terms. The problem has been solved numerically. The results are mainly presented in the form of velocity and temperature profiles. The obtained results have been compared with the numerical results of Chaynane et al. [1]. The effects of different influential parameters such as: inclination (ϕ), effective viscosity (Re<sub>K</sub>), and dimensionless thermal conductivity λ<sup>*</sup> on the flow and heat transfers are outlined.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB921801 and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.11374350,11034004,11274361,11274033,11474015,and 61227902)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20131102130005)
文摘A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteristics of PHE,the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180°domain wall displacement near the easy axis,respectively.However,the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently.The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement.Furthermore,the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.
文摘The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.
文摘Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effects has the hyper- bolic type. For the two-parameter family of periodic waves in the film flow on a vertical wall the modulation equations for nonlinear wave trains are derived and investigated. The stability criterium for roll waves based on the hyperbolicity of the modulation equations is suggested. It is shown that the evolution of stable roll waves can be described by self-similar solutions of the modulation equations.
文摘A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size, parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0.001~20 MHz.