Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the ...Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.展开更多
In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to...In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.展开更多
Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFL...Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt.展开更多
In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length sli...In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider bearing with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface), there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrodynamic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower initial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag.展开更多
Wall slip behavior of three commercial polymer melts polypropylene(iPP),low-density polyethylene(LDPE)(branched chains) and high-density polyethylene(HDPE)(linear chains) were studied by using a capillary rheometer wi...Wall slip behavior of three commercial polymer melts polypropylene(iPP),low-density polyethylene(LDPE)(branched chains) and high-density polyethylene(HDPE)(linear chains) were studied by using a capillary rheometer with twin bores at different temperatures.The results show that a sudden first-stick-then-slip transition was observed for HDPE and a first-slip-then-stick transition was observed for LDPE and iPP as the shear rate sweep was done in an increased order,which shows that the chain structure has an obvious effect on the wall slip behavior of polymers.The critical shear stress for the onset of stick-slip transition increases linearly with temperature for HDPE,which accords with the disentanglement mechanism proposed by Brochard and de Gennes.While the extrapolation length used to quantify the magnitude of the transition remains about 0.05-0.09 mm for HDPE at 150-230 ℃.Also the relationship between the critical shear stress for the onset of wall slip and the molecular mass for polymer samples agrees with the disentanglement model of Brochard and de Gennes.The onset of slip-stick transition for LDPE and iPP at a critical shear stress may be interpreted as the shear thinning of the polymer chains at high shear rates,preventing further development of wall slip behavior.展开更多
In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results ...In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.展开更多
The lubrication mechanism and the performance parameters with consideration of wall slip and inertial force are studied in this paper. Based on the modified Reynolds equation, the finite difference method is used to s...The lubrication mechanism and the performance parameters with consideration of wall slip and inertial force are studied in this paper. Based on the modified Reynolds equation, the finite difference method is used to study the lubrication mechanism and the performance. Effects of the wall slip and the inertial force on the performance parameters are obtained, and found in good agreement with the results of FLUENT. It is shown that the wall slip and the inertial force do not significantly change the distribution of the pressure, the load capacity and the friction force. The inertial force slightly increases the pressure and the load capacity by 1.2% and 4.8%, while the wall slip reduces them by 8.0% and 17.85%. The wall slip and the inertial force increase the friction by about 15.98%, 2.33%, respectively. Compared with the wall slip, the inertial force is smaller, but cannot be neglected.展开更多
In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjec...In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjected to a joint action of wall slip and electro-viscosity is an important topic. An analytical solution for the periodical pressure-driven flow in a two-dimensional uniform microchannel, with consideration of wall slip and electro-viscous effect is obtained based on the Poisson-Boltzmann equation for the Electric Double Layer (EDL) and the Navier-Stokes equations for the liquid flow. The analytic solutions agree well with the numerical solutions. The analytical results indicate that the periodical flow velocity and the Flow-Induced Electric Field (FIEF) strongly depend on the frequency Reynolds number (Re = (wh2/v ), that is a function of the frequency, the channel size and the kinetic viscosity of fluids. For Re 〈 1, the flow velocity and the FIEF behave similarly to those in a steady flow, whereas they decrease rapidly with Re as Re 〉 1. In addition, the electro-viscous effect greatly influences the periodical flow velocity and the FIEF, particularly, when the electrokinetic radius kH is small. Furthermore, the wall slip velocity amplifies the FIEF and enhances the electro-viscous effect on the flow.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51774137 and 51804121)。
文摘Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.
基金supported by the National Natural Science Foundation of China(10872076)
文摘In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.
文摘Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt.
基金the National Natural Science Foundation of China(10421002,10332010)the National Basic Research Program of China(2006CB601205)the Science Research Foundation of Liaoning Province(20052178).
文摘In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider bearing with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface), there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrodynamic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower initial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag.
基金Projects(ZMF07020038) supported by the Young Teacher's Scientific Research Fund of Jiangsu Polytechnic University,China
文摘Wall slip behavior of three commercial polymer melts polypropylene(iPP),low-density polyethylene(LDPE)(branched chains) and high-density polyethylene(HDPE)(linear chains) were studied by using a capillary rheometer with twin bores at different temperatures.The results show that a sudden first-stick-then-slip transition was observed for HDPE and a first-slip-then-stick transition was observed for LDPE and iPP as the shear rate sweep was done in an increased order,which shows that the chain structure has an obvious effect on the wall slip behavior of polymers.The critical shear stress for the onset of stick-slip transition increases linearly with temperature for HDPE,which accords with the disentanglement mechanism proposed by Brochard and de Gennes.While the extrapolation length used to quantify the magnitude of the transition remains about 0.05-0.09 mm for HDPE at 150-230 ℃.Also the relationship between the critical shear stress for the onset of wall slip and the molecular mass for polymer samples agrees with the disentanglement model of Brochard and de Gennes.The onset of slip-stick transition for LDPE and iPP at a critical shear stress may be interpreted as the shear thinning of the polymer chains at high shear rates,preventing further development of wall slip behavior.
基金Project supported by Seed Grant Project of CAU for World’s Top Agricultural University International Cooperation and Exchange.
文摘In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.
文摘The lubrication mechanism and the performance parameters with consideration of wall slip and inertial force are studied in this paper. Based on the modified Reynolds equation, the finite difference method is used to study the lubrication mechanism and the performance. Effects of the wall slip and the inertial force on the performance parameters are obtained, and found in good agreement with the results of FLUENT. It is shown that the wall slip and the inertial force do not significantly change the distribution of the pressure, the load capacity and the friction force. The inertial force slightly increases the pressure and the load capacity by 1.2% and 4.8%, while the wall slip reduces them by 8.0% and 17.85%. The wall slip and the inertial force increase the friction by about 15.98%, 2.33%, respectively. Compared with the wall slip, the inertial force is smaller, but cannot be neglected.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50805059)
文摘In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjected to a joint action of wall slip and electro-viscosity is an important topic. An analytical solution for the periodical pressure-driven flow in a two-dimensional uniform microchannel, with consideration of wall slip and electro-viscous effect is obtained based on the Poisson-Boltzmann equation for the Electric Double Layer (EDL) and the Navier-Stokes equations for the liquid flow. The analytic solutions agree well with the numerical solutions. The analytical results indicate that the periodical flow velocity and the Flow-Induced Electric Field (FIEF) strongly depend on the frequency Reynolds number (Re = (wh2/v ), that is a function of the frequency, the channel size and the kinetic viscosity of fluids. For Re 〈 1, the flow velocity and the FIEF behave similarly to those in a steady flow, whereas they decrease rapidly with Re as Re 〉 1. In addition, the electro-viscous effect greatly influences the periodical flow velocity and the FIEF, particularly, when the electrokinetic radius kH is small. Furthermore, the wall slip velocity amplifies the FIEF and enhances the electro-viscous effect on the flow.