The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface...The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface temperature(SST) is found over the ETIO—the warming responses to the positive forcing exceeds the cooling to the negative forcing. A mixed layer heat budget analysis is carried out to identify the mechanisms responsible for the SST asymmetry. Results show that it is mainly ascribed to the ocean dynamical processes, including vertical advections and diffusion. The net surface heat flux, on the contrary, works to reduce the asymmetry through its shortwave radiation and latent heat flux components. The former is due to the nonlinear relationship between SST and cloud, while the latter is resulted mainly from Newtonian damping and air-sea stability effects. Changes in the SST skewness are also evaluated, with more enhanced negative SST skewness over the ETIO found for the cooling than heating scenarios due to the asymmetric thermocline-SST feedback.展开更多
The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rai...The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.展开更多
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits...During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions.展开更多
In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(...In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(CP)El Niño happened during winter 2019/20,so the correlations between the El Niño–Southern Oscillation(ENSO)indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event.In this study,reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event.During summer 2020,unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly(NWPAC)contributed excess moisture and convective instability to the CC region,and thus,triggered extreme precipitation in this area.The tropical Indian Ocean(TIO)has warmed in recent decades,and consequently,intensified TIO basinwide warming appears after a weak El Niño,which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor(IPOC)effect.Additionally,the ENSO event of 2019/20 should be treated as a fast-decaying CP El Niño rather than a general CP El Niño,so that the circulation and precipitation anomalies in summer 2020 can be better understood.Last,the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation.展开更多
Numerical experiments with a low resolution atmospheric general circulation model (AGCM) were conducted to investigate the influences of SST anomalies (SSTA) over the South China Sea- tropical eastern indian Ocean (SC...Numerical experiments with a low resolution atmospheric general circulation model (AGCM) were conducted to investigate the influences of SST anomalies (SSTA) over the South China Sea- tropical eastern indian Ocean (SCS-TEIO) on the onset of the South China Sea summer Monsoon (SCSM).With positive SSTA over the SCS-TEIO,the anomalous cyclones appear over both sides of the equator at low layer,which weakens the Somali and Australian cross-equatorial SW flow. The anomalous anticyclone in the east of Phillips strengthens the subtropical high with its ridge southwestward shifted.The anomalous anticyclones over both sides of equator at high layer strengthen the South Asia high,thus weaken the SCSM and delay its onset.With negative SSTA over the SCS-ETIO,the anomalous anticyclones appear over both sides of the equator at low layer,which strengthen the Australian but weaken the Somali cross-equatorial SW flow.The anomalous cyclone in northeast of Phillips will weaken the subtropical high.The stronger monsoon meridional circulation over the tropical western Pacific will strengthen the cross-equatorial southerly flow,and the anomalous cyclones over both sides of equator at high layer will weaken the South Asia high,hence strengthen the SCSM and advance its onset.展开更多
The Pacific Walker circulation(PWC)was weak in the 20th century,but its strength increased in an interdecadal scale in the late 1990s.Previous studies have suggested that it could be caused by the warming of the tropi...The Pacific Walker circulation(PWC)was weak in the 20th century,but its strength increased in an interdecadal scale in the late 1990s.Previous studies have suggested that it could be caused by the warming of the tropical Atlantic Ocean,or induced by the warming of the tropical Indian Ocean.The tropical Atlantic Ocean would not only directly affect the PWC through the equatorial east Pacific to the west,but also produce an indirect effect to the east through the equatorial west Indian Ocean.Using a coupled general circulation model,we designed a series of tropical Atlantic Heating and Heating_Shut experiments with different heating rates,to detect the mechanism of the impact of tropical Atlantic warming on the PWC.Results show that the tropical Atlantic heating weakens the Atlantic Walker circulation but strengthens the PWC.Diagnostics of multiple physical variables with coherent lowereupper troposphere structure show the responses of the Indian Ocean to the Atlantic heating play a critical role in the strengthening of the PWC.The Atlanticelinked atmosphere over the tropical Indian Ocean exerts a significantly positive heat flux onto the ocean there,greatly warming the tropical Indian Ocean,especially on the west part.This produces strong convectively ascending at the equatorial West Indian Ocean,but descending at the East-central Indian Ocean,corresponding to a‘Walker’circulation and an‘antieWalker’circulation situated at the West and East equatorial Indian Ocean respectively.Meanwhile,the convergence(divergence)of the lower(upper)troposphere over the Indo‒Pacific region is also strengthened.In this way,the tropical Atlantic heating is linked to the PWC through the circulation over the equatorial Indian Ocean.This study serves as a preliminary step to understand the impact of tropical Atlantic warming on the PWC,more Atlantic heating sensitivity studies with multi-model experiments are required to further reveal the linkage of the Pacific and Atlantic.展开更多
本文分析了1948~2007年北半球夏季Hadley环流的主导模态及其变率,结果表明:北半球夏季Hadley环流变率的主导模态包括两个赤道非对称模态,其主体分别位于北半球(简称为AMN)和南半球(简称AMS)和一个赤道准对称的模态(简称QSM),AMN和AMS主...本文分析了1948~2007年北半球夏季Hadley环流的主导模态及其变率,结果表明:北半球夏季Hadley环流变率的主导模态包括两个赤道非对称模态,其主体分别位于北半球(简称为AMN)和南半球(简称AMS)和一个赤道准对称的模态(简称QSM),AMN和AMS主要表征Hadley环流的年代际变率部分,而QSM主要表征Hadley环流的年际变率部分。AMN的时间系数呈现明显的减弱趋势,AMS的时间系数则表现为明显的增强趋势,两个模态的年代际变率表明:北半球夏季Hadley环流发生了显著的年代际转型,在1970年代以前呈现"北强南弱"型,之后转变为"南强北弱"型。印度洋—西太平洋暖池和热带大西洋赤道带海温的异常增暖以及由热带大西洋和印度洋海温非均匀增暖形成的减弱的北半球大尺度经向海温梯度和加强的南半球大尺度经向海温梯度可能是导致上述Hadley环流变率的重要影响因子。不同于两个非对称模态,QSM模态的变率主要与热带东太平洋的海温以及Ni^no3.4指数有明显的线性关系,说明ENSO对夏季Hadley环流的影响主要是在年际尺度上。对Hadley环流年代际转型的进一步分析发现,其越赤道部分的减弱与东半球热带季风区经向越赤道环流的减弱有密切联系。相关和合成分析的结果显示,南海季风、南亚东区季风以及西非季风的强弱与越赤道环流异常有显著相关,热带季风在这些区域的减弱趋势很可能共同受到北半球夏季Hadley环流年代际转型中越赤道环流减弱的影响。然而,南亚西区季风与经向环流没有明显相关,同时也未呈现显著的年代际趋势,这一结果从环流的角度验证了Li and Zeng(2002)将南亚季风区划分为东区和西区的合理性。展开更多
利用中国站点降水和气温资料、NCEP/NCAR大气再分析资料和海温数据,总结了2021年春季(3—5月)我国气候异常特征,并初步分析了其可能成因。2021年春季全国平均气温为11.6℃,为1961年以来第四暖,但4月我国中部地区出现阶段性气温偏低;全...利用中国站点降水和气温资料、NCEP/NCAR大气再分析资料和海温数据,总结了2021年春季(3—5月)我国气候异常特征,并初步分析了其可能成因。2021年春季全国平均气温为11.6℃,为1961年以来第四暖,但4月我国中部地区出现阶段性气温偏低;全国平均降水量为145.3 mm,接近常年同期,但季内阶段性变化显著,这与环流的阶段性调整密切相关。3—4月亚洲中纬度环流为“东高西低”型,副热带高压偏弱偏东,有利于来自西北太平洋的水汽向长江以北输送,降水呈“北多南少”分布。5月中纬度环流转变为“东低西高”型,副热带高压西伸北扩,低层西南暖湿气流增强,在江南、华南强烈辐合上升,为强对流天气的频繁发生提供了有利条件,降水调整为“南多北少”分布。此外4月中旬开始,中高纬阻塞活动逐渐频繁,一方面导致我国中部地区气温阶段性偏低,另一方面也是造成南方强对流天气发生的重要因素之一。春季后期环流出现明显调整与高低纬度环流相互作用及热带海温的演变有关。4月中旬北极圈大气明显回暖,乌拉尔山高压脊增强,进而造成上述“东低西高”型环流异常;同时,随着5月热带印度洋的快速增暖,前期表现为对La Ni a事件响应的东亚低纬度环流形势也出现明显调整,从而导致季内降水分布也发生了明显变化。展开更多
基金The National Natural Science Foundation of China under contract No.41676002the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010302
文摘The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface temperature(SST) is found over the ETIO—the warming responses to the positive forcing exceeds the cooling to the negative forcing. A mixed layer heat budget analysis is carried out to identify the mechanisms responsible for the SST asymmetry. Results show that it is mainly ascribed to the ocean dynamical processes, including vertical advections and diffusion. The net surface heat flux, on the contrary, works to reduce the asymmetry through its shortwave radiation and latent heat flux components. The former is due to the nonlinear relationship between SST and cloud, while the latter is resulted mainly from Newtonian damping and air-sea stability effects. Changes in the SST skewness are also evaluated, with more enhanced negative SST skewness over the ETIO found for the cooling than heating scenarios due to the asymmetric thermocline-SST feedback.
基金This work was jointly supported by National Key R&D Program of China(2018YFC1505806)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金National Science Foundation of China(41875100)the China Meteorological Administration Innovation and Development Project(CXFZ2021Z033),and China Three Gorges Corporation(Grant No.0704181).
文摘The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004)National Basic Research Program of China (Grant No. 2009CB421401)Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)
文摘During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions.
基金This study was jointly supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(Grant No.XDB40000000)the CAS(Grant No.QYZDJ-SSW-DQC021)+3 种基金the National Natural Science Foundation of China(Grant No.41630531)the State Key Laboratory of Loess and Quaternary GeologyWe thank the supercomputer center of the Pilot Qingdao National Laboratory for Marine Science and Technology and Beijing Super Cloud Computing Center,who offered computing servicesWe also thank Dr.X.Z.LI,H.LIU,and L.LIU from the Institute of Earth Environment,CAS,who offered suggestions for our numerical experiments.
文摘In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(CP)El Niño happened during winter 2019/20,so the correlations between the El Niño–Southern Oscillation(ENSO)indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event.In this study,reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event.During summer 2020,unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly(NWPAC)contributed excess moisture and convective instability to the CC region,and thus,triggered extreme precipitation in this area.The tropical Indian Ocean(TIO)has warmed in recent decades,and consequently,intensified TIO basinwide warming appears after a weak El Niño,which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor(IPOC)effect.Additionally,the ENSO event of 2019/20 should be treated as a fast-decaying CP El Niño rather than a general CP El Niño,so that the circulation and precipitation anomalies in summer 2020 can be better understood.Last,the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation.
基金National Climbing Programme"South China Sea Monsoon Experiment"National Key Programme for Developing Basic Sciences G1998040900
文摘Numerical experiments with a low resolution atmospheric general circulation model (AGCM) were conducted to investigate the influences of SST anomalies (SSTA) over the South China Sea- tropical eastern indian Ocean (SCS-TEIO) on the onset of the South China Sea summer Monsoon (SCSM).With positive SSTA over the SCS-TEIO,the anomalous cyclones appear over both sides of the equator at low layer,which weakens the Somali and Australian cross-equatorial SW flow. The anomalous anticyclone in the east of Phillips strengthens the subtropical high with its ridge southwestward shifted.The anomalous anticyclones over both sides of equator at high layer strengthen the South Asia high,thus weaken the SCSM and delay its onset.With negative SSTA over the SCS-ETIO,the anomalous anticyclones appear over both sides of the equator at low layer,which strengthen the Australian but weaken the Somali cross-equatorial SW flow.The anomalous cyclone in northeast of Phillips will weaken the subtropical high.The stronger monsoon meridional circulation over the tropical western Pacific will strengthen the cross-equatorial southerly flow,and the anomalous cyclones over both sides of equator at high layer will weaken the South Asia high,hence strengthen the SCSM and advance its onset.
基金This research was supported by the National Natural Sci-ence Foundation of China(41830964,41775100)the National Key R&D Program of China(2017YFC1404104 and 2017YFC1404100)+1 种基金the Shandong Province’s“Taishan”Sci-entist Project(ts201712017)Qingdao“Creative and Initiative”frontier Scientist Program(19-3-2-7-zhc)。
文摘The Pacific Walker circulation(PWC)was weak in the 20th century,but its strength increased in an interdecadal scale in the late 1990s.Previous studies have suggested that it could be caused by the warming of the tropical Atlantic Ocean,or induced by the warming of the tropical Indian Ocean.The tropical Atlantic Ocean would not only directly affect the PWC through the equatorial east Pacific to the west,but also produce an indirect effect to the east through the equatorial west Indian Ocean.Using a coupled general circulation model,we designed a series of tropical Atlantic Heating and Heating_Shut experiments with different heating rates,to detect the mechanism of the impact of tropical Atlantic warming on the PWC.Results show that the tropical Atlantic heating weakens the Atlantic Walker circulation but strengthens the PWC.Diagnostics of multiple physical variables with coherent lowereupper troposphere structure show the responses of the Indian Ocean to the Atlantic heating play a critical role in the strengthening of the PWC.The Atlanticelinked atmosphere over the tropical Indian Ocean exerts a significantly positive heat flux onto the ocean there,greatly warming the tropical Indian Ocean,especially on the west part.This produces strong convectively ascending at the equatorial West Indian Ocean,but descending at the East-central Indian Ocean,corresponding to a‘Walker’circulation and an‘antieWalker’circulation situated at the West and East equatorial Indian Ocean respectively.Meanwhile,the convergence(divergence)of the lower(upper)troposphere over the Indo‒Pacific region is also strengthened.In this way,the tropical Atlantic heating is linked to the PWC through the circulation over the equatorial Indian Ocean.This study serves as a preliminary step to understand the impact of tropical Atlantic warming on the PWC,more Atlantic heating sensitivity studies with multi-model experiments are required to further reveal the linkage of the Pacific and Atlantic.
文摘本文分析了1948~2007年北半球夏季Hadley环流的主导模态及其变率,结果表明:北半球夏季Hadley环流变率的主导模态包括两个赤道非对称模态,其主体分别位于北半球(简称为AMN)和南半球(简称AMS)和一个赤道准对称的模态(简称QSM),AMN和AMS主要表征Hadley环流的年代际变率部分,而QSM主要表征Hadley环流的年际变率部分。AMN的时间系数呈现明显的减弱趋势,AMS的时间系数则表现为明显的增强趋势,两个模态的年代际变率表明:北半球夏季Hadley环流发生了显著的年代际转型,在1970年代以前呈现"北强南弱"型,之后转变为"南强北弱"型。印度洋—西太平洋暖池和热带大西洋赤道带海温的异常增暖以及由热带大西洋和印度洋海温非均匀增暖形成的减弱的北半球大尺度经向海温梯度和加强的南半球大尺度经向海温梯度可能是导致上述Hadley环流变率的重要影响因子。不同于两个非对称模态,QSM模态的变率主要与热带东太平洋的海温以及Ni^no3.4指数有明显的线性关系,说明ENSO对夏季Hadley环流的影响主要是在年际尺度上。对Hadley环流年代际转型的进一步分析发现,其越赤道部分的减弱与东半球热带季风区经向越赤道环流的减弱有密切联系。相关和合成分析的结果显示,南海季风、南亚东区季风以及西非季风的强弱与越赤道环流异常有显著相关,热带季风在这些区域的减弱趋势很可能共同受到北半球夏季Hadley环流年代际转型中越赤道环流减弱的影响。然而,南亚西区季风与经向环流没有明显相关,同时也未呈现显著的年代际趋势,这一结果从环流的角度验证了Li and Zeng(2002)将南亚季风区划分为东区和西区的合理性。
文摘利用中国站点降水和气温资料、NCEP/NCAR大气再分析资料和海温数据,总结了2021年春季(3—5月)我国气候异常特征,并初步分析了其可能成因。2021年春季全国平均气温为11.6℃,为1961年以来第四暖,但4月我国中部地区出现阶段性气温偏低;全国平均降水量为145.3 mm,接近常年同期,但季内阶段性变化显著,这与环流的阶段性调整密切相关。3—4月亚洲中纬度环流为“东高西低”型,副热带高压偏弱偏东,有利于来自西北太平洋的水汽向长江以北输送,降水呈“北多南少”分布。5月中纬度环流转变为“东低西高”型,副热带高压西伸北扩,低层西南暖湿气流增强,在江南、华南强烈辐合上升,为强对流天气的频繁发生提供了有利条件,降水调整为“南多北少”分布。此外4月中旬开始,中高纬阻塞活动逐渐频繁,一方面导致我国中部地区气温阶段性偏低,另一方面也是造成南方强对流天气发生的重要因素之一。春季后期环流出现明显调整与高低纬度环流相互作用及热带海温的演变有关。4月中旬北极圈大气明显回暖,乌拉尔山高压脊增强,进而造成上述“东低西高”型环流异常;同时,随着5月热带印度洋的快速增暖,前期表现为对La Ni a事件响应的东亚低纬度环流形势也出现明显调整,从而导致季内降水分布也发生了明显变化。