A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut...A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.展开更多
Aim To construct a third order upwind scheme for convection equation. Methods Upwind Lagrange interpolation was used. Results and Conclusion The schemes L p stability for p∈ is proved. Numerical exam...Aim To construct a third order upwind scheme for convection equation. Methods Upwind Lagrange interpolation was used. Results and Conclusion The schemes L p stability for p∈ is proved. Numerical examples show that performance of the third order upwind scheme is better than that of most second order schemes.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approx...WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ]展开更多
Microbial cultures are comprised of heterogeneous cells that differ according to their size and intracellular concentrations of DNA, proteins and other constituents. Because of the included level of details, multi-var...Microbial cultures are comprised of heterogeneous cells that differ according to their size and intracellular concentrations of DNA, proteins and other constituents. Because of the included level of details, multi-variable cell population balance models (PBMs) offer the most general way to describe the complicated phenomena associated with cell growth, substrate consumption and product formation. For that reason, solving and understanding of such models are essential to predict and control cell growth in the processes of biotechnological interest. Such models typically consist of a partial integro-differential equation for describing cell growth and an ordinary integro-differential equation for representing substrate consumption. However, the involved mathematical complexities make their numerical solutions challenging for the given numerical scheme. In this article, the central upwind scheme is applied to solve the single-variate and bivariate cell population balance models considering equal and unequal partitioning of cellular materials. The validity of the developed algorithms is verified through several case studies. It was found that the suggested scheme is more reliable and effective.展开更多
In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the m...In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.展开更多
The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase...The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.展开更多
A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive...A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the...In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.展开更多
High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a...High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.展开更多
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An add...A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An additional seventh equation, describing the total mixture energy, is added to the model to guarantee the correct treatment of shocks in the single phase limit. Some salient features of the model are that it is hyperbolic with only three wave propagation speeds and the volume fraction remains positive. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Moreover, a pressure relaxation procedure is used to fulfill the interface conditions. For validation, the results of suggested scheme are compared with those from the high resolution central upwind and HLLC schemes. The central upwind scheme is also applied for the first time to this model. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.展开更多
In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization ...In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization scheme for convection dominated problems is suggested.展开更多
文摘A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.
文摘Aim To construct a third order upwind scheme for convection equation. Methods Upwind Lagrange interpolation was used. Results and Conclusion The schemes L p stability for p∈ is proved. Numerical examples show that performance of the third order upwind scheme is better than that of most second order schemes.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
文摘WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ]
文摘Microbial cultures are comprised of heterogeneous cells that differ according to their size and intracellular concentrations of DNA, proteins and other constituents. Because of the included level of details, multi-variable cell population balance models (PBMs) offer the most general way to describe the complicated phenomena associated with cell growth, substrate consumption and product formation. For that reason, solving and understanding of such models are essential to predict and control cell growth in the processes of biotechnological interest. Such models typically consist of a partial integro-differential equation for describing cell growth and an ordinary integro-differential equation for representing substrate consumption. However, the involved mathematical complexities make their numerical solutions challenging for the given numerical scheme. In this article, the central upwind scheme is applied to solve the single-variate and bivariate cell population balance models considering equal and unequal partitioning of cellular materials. The validity of the developed algorithms is verified through several case studies. It was found that the suggested scheme is more reliable and effective.
文摘In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.
文摘The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.
文摘A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
基金NKBRSF CG 1990 3 2 80 5 National Natural Science F oundation of China !( No.5 98760 0 2 )
文摘In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.
文摘High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
文摘A kinetic flux-vector splitting (KFVS) scheme is applied for solving a reduced six-equation two-phase flow model of Saurel et al. [1]. The model incorporates single velocity, two pressures and relaxation terms. An additional seventh equation, describing the total mixture energy, is added to the model to guarantee the correct treatment of shocks in the single phase limit. Some salient features of the model are that it is hyperbolic with only three wave propagation speeds and the volume fraction remains positive. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Moreover, a pressure relaxation procedure is used to fulfill the interface conditions. For validation, the results of suggested scheme are compared with those from the high resolution central upwind and HLLC schemes. The central upwind scheme is also applied for the first time to this model. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.
文摘In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization scheme for convection dominated problems is suggested.