High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One o...The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.展开更多
Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic me...Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites.展开更多
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
基金the supports provided by National Iranian Oil Engineering and Construction Company(NIOEC)。
文摘The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.
基金supported by the National Scientific and Technical Supporting 12th Five-year Plan Project(No.2012BAD23B0203)
文摘Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites.