Strongly acidic wastewater produced in nonferrous metal smelting industries often contains high concentrations of Ni(Ⅱ), which is a valuable metal. In this study, the precipitation of Ni(Ⅱ) from strongly acidic wast...Strongly acidic wastewater produced in nonferrous metal smelting industries often contains high concentrations of Ni(Ⅱ), which is a valuable metal. In this study, the precipitation of Ni(Ⅱ) from strongly acidic wastewater using sodium dimethyldithiocarbamate(DDTC) as the precipitant was evaluated. The effects of various factors on precipitation were investigated, and the precipitation mechanism was also identified. Finally, the nickel in the precipitates was recovered following a pyrometallurgical method. The results show that, under optimised conditions(DDTC:Ni(Ⅱ) molar ratio = 4:1;temperature = 25 ℃), the Ni(Ⅱ) removal efficiency reached 99.3% after 10 min. In strongly acidic wastewater, the dithiocarbamate group of DDTC can react with Ni(Ⅱ) to form DDTC –Ni precipitates. Further recovery experiments revealed that high-purity Ni O can be obtained by the calcination of DDTC –Ni precipitates, with the nickel recovery efficiency reaching 98.2%. The gas released during the calcination process was composed of NO_(2), CS_(2), H_(2)O, CO_(2), and SO_(2). These results provide a basis for an effective Ni(Ⅱ) recovery method from strongly acidic wastewater.展开更多
基金supported by the National Key Research and Development Project (No. 2019YFC1907603 )the National Natural Science Foundation of China (Nos. 21976195 , 21707153 )。
文摘Strongly acidic wastewater produced in nonferrous metal smelting industries often contains high concentrations of Ni(Ⅱ), which is a valuable metal. In this study, the precipitation of Ni(Ⅱ) from strongly acidic wastewater using sodium dimethyldithiocarbamate(DDTC) as the precipitant was evaluated. The effects of various factors on precipitation were investigated, and the precipitation mechanism was also identified. Finally, the nickel in the precipitates was recovered following a pyrometallurgical method. The results show that, under optimised conditions(DDTC:Ni(Ⅱ) molar ratio = 4:1;temperature = 25 ℃), the Ni(Ⅱ) removal efficiency reached 99.3% after 10 min. In strongly acidic wastewater, the dithiocarbamate group of DDTC can react with Ni(Ⅱ) to form DDTC –Ni precipitates. Further recovery experiments revealed that high-purity Ni O can be obtained by the calcination of DDTC –Ni precipitates, with the nickel recovery efficiency reaching 98.2%. The gas released during the calcination process was composed of NO_(2), CS_(2), H_(2)O, CO_(2), and SO_(2). These results provide a basis for an effective Ni(Ⅱ) recovery method from strongly acidic wastewater.